Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822747

ABSTRACT

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin ( l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin ( d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.

2.
J Ethnopharmacol ; 330: 118179, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636575

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY: This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS: With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS: This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS: The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.


Subject(s)
Diabetic Nephropathies , Drugs, Chinese Herbal , Diabetic Nephropathies/drug therapy , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Animals , Medicine, Chinese Traditional/methods , Phytotherapy
3.
Front Microbiol ; 14: 1258415, 2023.
Article in English | MEDLINE | ID: mdl-37808288

ABSTRACT

The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.

4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232925

ABSTRACT

Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × â™‚ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.


Subject(s)
Bass , Coinfection , Fish Diseases , Vibrio Infections , Vibrio , Animals , Aquaculture , Bass/genetics , Coinfection/veterinary , Fish Diseases/epidemiology , Fish Diseases/microbiology , Prevalence , Vibrio/genetics , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Vibrio Infections/veterinary
5.
Microbiol Res ; 253: 126883, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626929

ABSTRACT

Vibrio alginolyticus belongs to gram-negative opportunistic pathogen realm infecting humans and aquatic animals causing severe economic losses. The (p)ppGpp-mediated stringent response is corroborated to stress adaptation and virulence of pathogenic mechanisms. Limited reports are documented for the intricate assessment of (p)ppGpp synthetase genes in combating various stress adaptation and elucidation of virulence in V. alginolyticus remains unraveled. The present assessment comprises of generation of deletion mutants in the (p)ppGpp-deficient strains, ΔrelA (relA gene single mutant) and ΔrelAΔspoT (relA and spoT genes double mutant), and the complemented strains, ΔrelA+ and ΔrelAΔspoT+, were constructed to investigate the pivotal roles of (p)ppGpp synthetase genes in V. alginolyticus, respectively. Amino acid sequence alignment analysis initially revealed that RelA and SpoT possess relatively conserved domains and synthetase activity. Hydrolase activity was emancipated by SpoT alone showing variant mode of action. Compared with the wild type and complemented strains, the relA-deficient strain was more sensitive to amino acid starvation and mupirocin. Interestingly, the deletion of spoT resulted in a significant growth deficiency supplemented with bile salts, 3 % ethanol and heat shock. Rapid growth was observed in the stationary phase upon exposure to cold stress and lower doses of ethanol. Subsequently, disruption of (p)ppGpp synthetase genes caused the decline in swimming motility, enhanced biofilm formation, cell aggregation of V. alginolyticus, and reduced mortality of Litopenaeus vannamei. The expression levels of some virulence-associated genes were quantified affirming consistency established by pleiotropic phenotypes. The results are evident for putative roles of (p)ppGpp synthetase genes attributing essential roles for environmental adaption and virulence regulation in V. alginolyticus.


Subject(s)
Pyrophosphatases , Stress, Physiological , Transcription Factor RelA , Vibrio alginolyticus , Virulence , Pyrophosphatases/genetics , Stress, Physiological/genetics , Transcription Factor RelA/genetics , Vibrio alginolyticus/genetics , Vibrio alginolyticus/pathogenicity , Virulence/genetics
6.
Biotechnol Lett ; 41(8-9): 1077-1091, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31236789

ABSTRACT

OBJECTIVES: 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS) is an important enzyme in mevalonate (MVA) pathway of isoprenoid biosynthesis, which regulates the rubber biosynthetic pathway in rubber tree (Hevea brasiliensis) in coordination with HMG-CoA reductase (HMGR). However, little information is available about the regulation of HMGS gene expression. To understand the mechanism controlling the HbHMGS1 gene expression, we characterized the HbHMGS1 promoter sequence in transgenic plants with the ß-glucuronidase (GUS) reporter gene. RESULTS: GUS activity analysis of the transgenic plants showed that the HbHMGS1 promoter is active in all organs of the transgenic Arabidopsis plants during various developmental stages (from 6 to 45-day-old). Deletion of different portions of the upstream HbHMGS1 promoter identified sequences responsible for either positive or negative regulation of the GUS expression. Particularly, the - 454 bp HbHMGS1 promoter resulted in a 2.19-fold increase in promoter activity compared with the CaMV 35S promoter, suggesting that the - 454 bp HbHMGS1 promoter is a super-strong near-constitutive promoter. In addition, a number of promoter regions important for the responsiveness to ethylene, methyl jasmonate (MeJA) and gibberellic acid (GA) were identified. CONCLUSION: The - 454 bp HbHMGS1 promoter has great application potential in plant transformation studies as an alternative to the CaMV 35S promoter. The HbHMGS1 promoter may play important roles in regulating ethylene-, MeJA- and GA-mediated gene expression. The functional complexity of cis-elements revealed by this study remains to be elucidated.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Hevea/enzymology , Hydroxymethylglutaryl-CoA Synthase/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Regulatory Sequences, Nucleic Acid , DNA Mutational Analysis , Gene Expression Profiling , Hevea/genetics , Hydroxymethylglutaryl-CoA Synthase/biosynthesis , Plant Proteins/biosynthesis , Promoter Regions, Genetic , Sequence Analysis, DNA , Sequence Deletion
7.
Genes Genomics ; 40(11): 1181-1197, 2018 11.
Article in English | MEDLINE | ID: mdl-30315521

ABSTRACT

Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at 4 °C for 2 h) and LT24 (cold treatment at 4 °C for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Hevea/genetics , Gene Expression Profiling , Gene Ontology , Hevea/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...