Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nature ; 629(8010): 86-91, 2024 May.
Article in English | MEDLINE | ID: mdl-38658763

ABSTRACT

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

2.
J Control Release ; 367: 697-707, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331001

ABSTRACT

Precise targeting is a major prerequisite for effective cancer therapy because it ensures a sufficient therapeutic dosage in tumors while minimizing off-target side effects. Herein, we report a live-macrophage-based therapeutic system for high-efficiency tumor therapy. As a proof of concept, anti-human epidermal growth factor receptor-2 (HER2) affibodies were genetically engineered onto the extracellular membrane of macrophages (AE-Mφ), which further internalized doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) to produce a macrophage-based therapeutic system armed with anti-HER2 affibodies. NPs(DOX)@AE-Mφ were able to target HER2+ cancer cells and specifically elicit affibody-mediated cell therapy. Most importantly, the superior HER2 + -targeting capability of NPs(DOX)@AE-Mφ greatly guaranteed high accumulation at the tumor site for improved chemotherapy, which acted synergistically with cell therapy to significantly enhance anti-tumor efficacy. This study suggests that NPs(DOX)@AE-Mφ could be utilized as an innovative 'living targeted drug' platform for combining both macrophage-mediated cell therapy and targeted chemotherapy for the individualized treatment of solid tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Drug Carriers , Neoplasms/drug therapy , Drug Delivery Systems , Doxorubicin/therapeutic use , Macrophages , Cell Line, Tumor
3.
Adv Mater ; 36(16): e2312590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227454

ABSTRACT

Fiber solar cells as promising wearable power supplies have attracted increasing attentions recently, while further breakthrough on their power conversion efficiency (PCE) and realization of multicolored appearances remain urgent needs particularly in real-world applications. Here, a fiber-dye-sensitized solar cell (FDSSC) integrated with a light diffusion layer composed of alumina/polyurethane film on the outmost encapsulating tube and a light conversion layer made from phosphors/TiO2/poly(vinylidene fluoride-co-hexafluoropropylene) film on the inner counter electrode is designed. The incident light is diffused to more surfaces of fiber electrodes, then converted on counter electrode and reflected to neighboring photoanode, so the FDSSC efficiently takes advantage of the fiber shape for remarkably enhanced light harvesting, producing a record PCE of 13.11%. These efficient FDSSCs also realize color-tunable appearances, improving their designability and compatibility with textiles. They are further integrated with fiber batteries as power systems, providing a power solution for wearables and emerging smart textiles.

4.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255993

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly detrimental cancer type and has limited therapeutic options, posing significant threats to human health. The development of HCC has been associated with a disorder in bile acid (BA) metabolism. In this study, we employed an integrative approach, combining various datasets and omics analyses, to comprehensively characterize the tumor microenvironment in HCC based on genes related to BA metabolism. Our analysis resulted in the classification of HCC samples into four subtypes (C1, C2a, C2b, and C3). Notably, subtype C2a, characterized by the highest bile acid metabolism score (BAMS), exhibited the highest survival probability. This subtype also demonstrated increased immune cell infiltration, lower cell cycle scores, reduced AFP levels, and a lower risk of metastasis compared to subtypes C1 and C3. Subtype C1 displayed poorer survival probability and elevated cell cycle scores. Importantly, the identified subtypes based on BAMS showed potential relevance to the gene expression of drug targets in currently approved drugs and those under clinical research. Genes encoding VEGFR (FLT4 and KDR) and MET were elevated in C2, while genes such as TGFBR1, TGFB1, ADORA3, SRC, BRAF, RET, FLT3, KIT, PDGFRA, and PDGFRB were elevated in C1. Additionally, FGFR2 and FGFR3, along with immune target genes including PDCD1 and CTLA4, were higher in C3. This suggests that subtypes C1, C2, and C3 might represent distinct potential candidates for TGFB1 inhibitors, VEGFR inhibitors, and immune checkpoint blockade treatments, respectively. Significantly, both bulk and single-cell transcriptome analyses unveiled a negative correlation between BA metabolism and cell cycle-related pathways. In vitro experiments further confirmed that the treatment of HCC cell lines with BA receptor agonist ursodeoxycholic acid led to the downregulation of the expression of cell cycle-related genes. Our findings suggest a plausible involvement of BA metabolism in liver carcinogenesis, potentially mediated through the regulation of tumor cell cycles and the immune microenvironment. This preliminary understanding lays the groundwork for future investigations to validate and elucidate the specific mechanisms underlying this potential association. Furthermore, this study provides a novel foundation for future precise molecular typing and the design of systemic clinical trials for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Prognosis , Single-Cell Gene Expression Analysis , Liver Neoplasms/genetics , Bile Acids and Salts , Tumor Microenvironment/genetics
5.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958903

ABSTRACT

The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.


Subject(s)
Neoplasms , Signal Transduction , Tumor-Associated Macrophages , Heme Oxygenase-1 , Cell Line, Tumor
6.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958642

ABSTRACT

Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Cell Proliferation , Cell Division , Cell Cycle Proteins/genetics , Cell Line, Tumor , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
7.
Mol Oncol ; 17(4): 611-628, 2023 04.
Article in English | MEDLINE | ID: mdl-36587392

ABSTRACT

An immunosuppressive state is regulated by various factors in the tumor microenvironment (TME), including, but not limited to, metabolic plasticity of immunosuppressive cells and cytokines secreted by these cells. We used single-cell RNA-sequencing (scRNA-seq) data and applied single-cell flux estimation analysis to characterize the link between metabolism and cellular function within the hypoxic TME of colorectal (CRC) and lung cancer. In terms of metabolic heterogeneity, we found myeloid cells potentially inclined to accumulate glutamine but tumor cells inclined to accumulate glutamate. In particular, we uncovered a tumor-associated macrophage (TAM) subpopulation, APOE+CTSZ+TAM, that was present in high proportions in tumor samples and exhibited immunosuppressive characteristics through upregulating the expression of anti-inflammatory genes. The proportion of APOE+CTSZ+TAM and regulatory T cells (Treg) were positively correlated across CRC scRNA-seq samples. APOE+CTSZ+TAM potentially interacted with Treg via CXCL16-CCR6 signals, as seen by ligand-receptor interactions analysis. Notably, glutamate-to-glutamine metabolic flux score and glutamine synthetase (GLUL) expression were uniquely higher in APOE+CTSZ+TAM, compared with other cell types within the TME. GLUL expression in macrophages was positively correlated with anti-inflammatory score and was higher in high-grade and invasive tumor samples. Moreover, spatial transcriptome and multiplex immunofluorescence staining of samples showed that APOE+CTSZ+TAM and Treg potentially colocalized in the tissue sections from CRC clinical samples. These results highlight the specific role and metabolic characteristic of the APOE+CTSZ+TAM subpopulation and provide a new perspective for macrophage subcluster-targeted therapeutic interventions or metabolic checkpoint-based cancer therapies.


Subject(s)
Glutamate-Ammonia Ligase , Lung Neoplasms , Tumor-Associated Macrophages , Humans , Apolipoproteins E/genetics , Gene Expression , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine , Phenotype , Single-Cell Analysis , Spatial Analysis , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/metabolism
8.
Genes (Basel) ; 13(10)2022 10 08.
Article in English | MEDLINE | ID: mdl-36292703

ABSTRACT

Various studies have shown that lysine acetyltransferase 2A (KAT2A), E2F transcription factor 1 (E2F1), and ubiquitin conjugating enzyme E2 C (UBE2C) genes regulated the proliferation and migration of tumor cells through regulating the cell cycle. However, there is a lack of in-depth and systematic research on their mechanisms of action. This study analyzed The Cancer Genome Atlas (TCGA) to screen potential candidate genes and the regulation network of KAT2A and E2F1 complex in pan-cancer. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB), cell phenotype detection, immunofluorescence co-localization, chromatin immunoprecipitation assay (ChIP), and RNA-Seq techniques were used to explore the functional of a candidate gene, UBE2C. We found that the expression of these three genes was significantly higher in more than 10 tumor types compared to normal tissue. Moreover, UBE2C was mainly expressed in tumor cells, which highlighted the impacts of UBE2C as a specific therapeutic strategy. Moreover, KAT2A and E2F1 could promote cell proliferation and the migration of cancer cells by enhancing the expression of UBE2C. Mechanically, KAT2A was found to cooperate with E2F1 and be recruited by E2F1 to the UBE2C promoter for elevating the expression of UBE2C by increasing the acetylation level of H3K9.


Subject(s)
Lysine Acetyltransferases , Neoplasms , Ubiquitin-Conjugating Enzymes/genetics , Cell Line, Tumor , Cell Proliferation/genetics , E2F Transcription Factors , Neoplasms/genetics
9.
Front Immunol ; 13: 943090, 2022.
Article in English | MEDLINE | ID: mdl-36081518

ABSTRACT

DNA damage repair (DDR) is critical in maintaining normal cellular function and genome integrity and is associated with cancer risk, progression, and therapeutic response. However, there is still a lack of a thorough understanding of the effects of DDR genes' expression level in cancer progression and therapeutic resistance. Therefore, we defined a tumor-related DDR score (TR-DDR score), utilizing the expression levels of 20 genes, to quantify the tumor signature of DNA damage repair pathways in tumors and explore the possible function and mechanism for the score among different cancers. The TR-DDR score has remarkably predictive power for tumor tissues. It is a more accurate indicator for the response of chemotherapy or immunotherapy combined with the tumor-infiltrating lymphocyte (TIL) and G2M checkpoint score than the pre-existing predictors (CD8 or PD-L1). This study points out that the TR-DDR score generally has positive correlations with patients of advanced-stage, genome-instability, and cell proliferation signature, while negative correlations with inflammatory response, apoptosis, and p53 pathway signature. In the context of tumor immune response, the TR-DDR score strongly positively correlates with the number of T cells (CD4+ activated memory cells, CD8+ cells, T regs, Tfh) and macrophages M1 polarization. In addition, by difference analysis and correlation analysis, COL2A1, MAGEA4, FCRL4, and ZIC1 are screened out as the potential modulating factors for the TR-DDR score. In summary, we light on a new biomarker for DNA damage repair pathways and explore its possible mechanism to guide therapeutic strategies and drug response prediction.


Subject(s)
DNA Damage , Neoplasms , DNA Repair , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Neoplasms/drug therapy , Neoplasms/therapy , Signal Transduction
10.
Front Mol Biosci ; 9: 877320, 2022.
Article in English | MEDLINE | ID: mdl-36060253

ABSTRACT

The upregulated proline rich 11 (PRR11) plays a critical role in cancer progression. The relevant biological functions of PRR11 in pan-cancer development are not well understood. In the current study, we found that PRR11 was upregulated in 19 cancer types compared with that of normal tissues and high-expressed PRR11 was a predictor of poor prognosis in 10 cancer types by bioinformatics. Then we showed that interfering PRR11 on three cancer cell lines could greatly inhibit cell proliferation and migration and arrest cells to S phase in vivo. Based on RNA-seq, downregulation of PRR11 expression could extremely suppress the expression of PTTG1 and the cell cycle pathway identified by a differentially expressed gene analysis and an enrichment analysis. The expression of PRR11 and PTTG1 was positively correlated in TCGA and independent GEO data sets. Importantly, we revealed that the PRR11 could express itself in the nucleus and interact with E2F1 on the PTTG1 promoter region to increase the expression of PTTG1. Further results indicated that the expression of PTTG1 was also associated with poor prognosis in 10 cancer types, while downregulation of PTTG1 expression could inhibit cancer cell proliferation and migration. Therefore, we found that PRR11 served as an oncogene in pan-cancer and could influence the cell cycle progression through regulating the expression of PTTG1 by interacting with the transcription factor E2F1.

11.
Comput Struct Biotechnol J ; 19: 4426-4434, 2021.
Article in English | MEDLINE | ID: mdl-34471489

ABSTRACT

The comprehensive and integrative analysis of RNA-seq data, in different molecular layers from diverse samples, holds promise to address the full-scale complexity of biological systems. Recent advances in gene set variant analysis (GSVA) are providing exciting opportunities for revealing the specific biological processes of cancer samples. However, it is still urgently needed to develop a tool, which combines GSVA and different molecular characteristic analysis, as well as prognostic characteristics of cancer patients to reveal the biological processes of disease comprehensively. Here, we develop ARMT, an automatic tool for RNA-Seq data analysis. ARMT is an efficient and integrative tool with user-friendly interface to analyze related molecular characters of single gene and gene set comprehensively based on transcriptome and genomic data, which builds the bridge for deeper information between genes and pathways, to further accelerate scientific findings. ARMT can be installed easily from https://github.com/Dulab2020/ARMT.

12.
PeerJ ; 8: e8543, 2020.
Article in English | MEDLINE | ID: mdl-32110485

ABSTRACT

Classical swine fever (CSF) is a disease that is characterized by diffuse hemorrhaging, high fever, and high mortality rates. The pro-inflammatory characteristics of allograft inflammatory factor 1 (AIF1) have been well documented; however, insufficient attention has been given to porcine AIF1. In the present study, AIF1 was identified as a key player contributing to CSFV Shimen infection in porcine alveolar macrophage (PAM) 3D4/21 cell line. Our evaluation showed that AIF1 mRNA and protein are expressed at a time-dependent high level in CSFV Shimen-infected PAM 3D4/21 cells. The transcription and translation of IL6 were also significantly upregulated in infected PAM 3D4/21 cells. By utilizing overexpression RNAs approach, we showed that the cellular AIF1 induced an increased IL6 in PAM 3D4/21 cells. Furthermore, silencing of AIF1 suppressed CSFV Shimen-induced IL6 production in PAM 3D4/21 cells and also inhibited CSFV replication, whereas overexpression of recombinant AIF1 was beneficial for the replication of CSFV Shimen and promoting IL6 production in CSFV Shimen-infected PAM 3D4/21 cells. It is suggested CSFV Shimen induced IL6 in PAM 3D4/21 cells via AIF1 activation, which help clarify the AIF1-related inflammatory processes that occur on CSFV Shimen infected macrophages.

13.
BMC Vet Res ; 15(1): 82, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30849965

ABSTRACT

BACKGROUND: The Shimen strain of classical swine fever (CSF) virus (CSFV) causes CSF, which is mainly characterised by disseminated intravascular haemorrhage. Macrophages are an essential component of innate immunity against pathogenic microorganisms; however, the role of macrophages in CSF pathogenesis remains unclear. To illuminate the infective mechanism of CSFV, we used gene co-expression networks derived from macrophages infected with CSFV Shimen and CSFV C as well as uninfected macrophages to screen key regulatory genes, and their contributions to the pathogenesis of CSF were discussed. RESULTS: Vascular endothelial growth factor A (VEGFA) and plasminogen activator, urokinase (PLAU, which encodes urokinase-type plasminogen activator [uPA]) were identified as coordinated genes expressed in macrophages by gene co-expression networks. Quantitative polymerase chain reaction and western blot analysis confirmed that VEGFA and PLAU were significantly up-regulated at both the transcription and translation levels after infection. Further, confocal microscopy analysis proposed that the VEGFA and uPA proteins were temporally co-localised with the CSFV protein E2. CONCLUSIONS: Our findings suggest that co-expression of VEGFA and PLAU in macrophages contributes to CSFV Shimen infection and serves as a significant avenue for the strain to form an inflammatory microenvironment, providing new insight into the mechanisms of CSF caused by a virulent strain.


Subject(s)
Classical Swine Fever/virology , Macrophages/virology , Urokinase-Type Plasminogen Activator/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Classical Swine Fever Virus/physiology , Gene Expression Profiling , Gene Regulatory Networks , Macrophages/metabolism , Sus scrofa , Swine , Urokinase-Type Plasminogen Activator/genetics , Vascular Endothelial Growth Factor A/genetics , Virulence
14.
Colloids Surf B Biointerfaces ; 171: 110-114, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30016749

ABSTRACT

Classical swine fever (CSF) is a devastating viral disease affecting pigs that causes major economic losses worldwide. Conventional assays to identify classical swine fever virus (CSFV) face challenges, such as the required molecular amplification of the target molecules via polymerase chain reaction (PCR). We designed a gold nanoflare probe to directly detect CSFV. Gold nanoparticles (AuNPs) were conjugated with a pair of complementary DNA sequences that specifically recognized and captured CSFV RNA, resulting in a fluorescence signal to indicate the existence of CSFV. The constructed nanocomposite was then utilized in a quantitative analysis to recognize the virus sequence present at amounts as low as 50 pg/µL. The CSFV-AuNP probe enabled real-time, quantitative detection of native CSFV in response to doses of the specific RNA sequence (CSFV NS2) that indicated active viral replication of CSFV Shimen in macrophages after 12, 24, and 48 h. The potential diagnostic applications of the probe were demonstrated by measuring CSFV without nucleic acid amplification in samples from seven types of tissue samples, specifically heart, spleen, kidney, liver, lymph, intestine, and muscle samples obtained from one pig confirmed to suffer CSF. The speed, sensitivity, and versatility of this CSFV-AuNP biosensor make it an ideal candidate for further application in the prevention and control of animal epidemic diseases.


Subject(s)
Classical Swine Fever Virus/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Probes/chemistry , Animals , Cells, Cultured , Classical Swine Fever Virus/genetics , Molecular Probes/chemical synthesis , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , Swine , Virus Replication/genetics
15.
PeerJ ; 6: e4254, 2018.
Article in English | MEDLINE | ID: mdl-29340250

ABSTRACT

The etiology of cancer includes aberrant cellular homeostasis where a compromised RNA regulatory network is a prominent contributing factor. In particular, noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) were recently shown to play important roles in the initiation, progression, and metastasis of human cancers. Nonetheless, a mechanistic understanding of noncoding RNA functions in lung squamous cell carcinoma (LUSC) is lacking. To fill this critical gap in knowledge, we obtained mRNA, miRNA, and lncRNA expression data on patients with LUSC from the updated Cancer Genome Atlas (TCGA) database (2016). We successfully identified 3,366 mRNAs, 79 miRNAs, and 151 lncRNAs as key contributing factors of a high risk of LUSC. Furthermore, we hypothesized that the lncRNA-miRNA-mRNA regulatory axis positively correlates with LUSC and constructed a competitive endogenous RNA (ceRNA) network of LUSC by targeting interrelations with significantly aberrant expression data between miRNA and mRNA or lncRNA. Six ceRNAs (PLAU, miR-31-5p, miR-455-3p, FAM83A-AS1, MIR31HG, and MIR99AHG) significantly correlated with survival (P < 0.05). Finally, real-time quantitative PCR analysis showed that PLAU is significantly upregulated in SK-MES-1 cells compared with 16-BBE-T cells. Taken together, our findings represent new knowledge for a better understanding the ceRNA network in LUSC biology and pave the way to improved diagnosis and prognosis of LUSC.

16.
Int J Cancer ; 134(1): 224-34, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23784981

ABSTRACT

Inactivated Sendai virus (HVJ-E) directly kills cancer cells by inducing apoptosis through a mechanism mediated by Janus kinases/signal transducers and activators of transcription (JAK/STAT) signaling pathways. However, whether other signaling pathways are involved remain largely unknown. This study aimed to investigate the mechanism underlying HVJ-E-induced apoptosis in murine B16F10 melanoma cells. We found that HVJ-E induced B16F10 cell apoptosis via the caspase pathway, particularly caspase-9, which mediates the intrinsic apoptotic pathway. Mitogen-activated protein kinase (MAPK) pathway activation also contributed to HVJ-E-induced apoptosis. Whereas caspase pathway involvement depended on both IFN-ß promoter stimulator-1 (IPS-1) and type I interferon (IFN), MAPK pathway activation was independent of type I IFN but involved IPS-1. In addition, intratumoral HVJ-E treatment displayed a direct oncolytic effect in an in vivo BALB/c nude mouse melanoma model. Collectively, our data provides new insights into the mechanism underlying HVJ-E-induced apoptosis in tumor cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/physiology , Melanoma/metabolism , Oncolytic Virotherapy/methods , Sendai virus/physiology , Animals , Flow Cytometry , Immunoblotting , In Situ Nick-End Labeling , Melanoma/pathology , Melanoma/virology , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred BALB C , Mice, Nude , Oncolytic Viruses/physiology , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...