Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 13(5): 956-962, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28078333

ABSTRACT

Thin films that exhibit spatially heterogeneous swelling often buckle into the third dimension to minimize stress. These effects, in turn, offer a promising strategy to fabricate complex three-dimensional structures from two-dimensional sheets. Here we employ surface topography as a new means to guide buckling of swollen polymer bilayer films and thereby control the morphology of resulting three-dimensional objects. Topographic patterns are created on poly(dimethylsiloxane) (PDMS) films selectively coated with a thin layer of non-swelling parylene on different sides of the patterned films. After swelling in an organic solvent, various structures are formed, including half-pipes, helical tubules, and ribbons. We demonstrate these effects and introduce a simple geometric model that qualitatively captures the relationship between surface topography and the resulting swollen film morphologies. The model's limitations are also examined.

2.
Proc Natl Acad Sci U S A ; 112(24): 7449-53, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26015582

ABSTRACT

We use a regular arrangement of kirigami elements to demonstrate an inverse design paradigm for folding a flat surface into complex target configurations. We first present a scheme using arrays of disclination defect pairs on the dual to the honeycomb lattice; by arranging these defect pairs properly with respect to each other and choosing an appropriate fold pattern a target stepped surface can be designed. We then present a more general method that specifies a fixed lattice of kirigami cuts to be performed on a flat sheet. This single pluripotent lattice of cuts permits a wide variety of target surfaces to be programmed into the sheet by varying the folding directions.

3.
Phys Rev Lett ; 113(24): 245502, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541778

ABSTRACT

In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami­folding, cutting, and pasting the edges of paper.

SELECTION OF CITATIONS
SEARCH DETAIL