Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharmacol ; 981: 176866, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39089461

ABSTRACT

RATIONALE: The rewarding effect of Methamphetamine (METH) is commonly believed to play an important role in METH use disorder. The altered expression of dopamine D1 receptor (D1R) has been suggested to be essential to the rewarding effect of METH. Notably, D1R could interact with histamine H3 receptors (H3R) by forming a H3R-D1R heteromer (H3R-D1R). OBJECTIVES: This study was designed to specifically investigate the involvement of H3R-D1R in the rewarding effect of METH. METHODS: C57BL/6 mice were treated with intraperitoneal injections of a selective H3R antagonist (Thioperamide, THIO; 20 mg/kg), an H1R antagonist (Pyrilamine, PYRI; 10 mg/kg), or microinjections of cytomegalovirus (CMV)-transmembrane domain 5 (TM5) into the nucleus accumbens (NAc). The animal model of Conditioned Place Preference (CPP) was applied to determine the impact of H3R-D1R on the rewarding effect of METH. RESULTS: METH resulted in a significant preference for the drug-associated chamber, in conjunction with increased H3R and decreased D1R expression in both NAc and the ventral tegmental area (VTA). THIO significantly attenuated the rewarding effect of METH, accompanied by decreased H3R and increased D1R expression. In contrast, pyrilamine failed to produce the similar effects. Moreover, the inhibitory effect of THIO on METH-induced CPP was reversed by SKF38393, a D1R agonist. Furthermore, SCH23390, a D1R antagonist, counteracted the ameliorative effect of SKF38393 on THIO. Co-immunoprecipitation (CO-IP) experiments further demonstrated the specific interaction between H3R and D1R in METH CPP mice. The rewarding effect of METH was also significantly blocked by the interruption of CMV-transmembrane domain 5 (TM5), but not CMV-transmembrane domain 7 (TM7) in NAc. CONCLUSION: These results suggest that modulating the activity of H3R-D1R complex holds promise for regulating METH use disorder and serves as a potential drug target for its treatment.


Subject(s)
Methamphetamine , Mice, Inbred C57BL , Receptors, Dopamine D1 , Receptors, Histamine H3 , Animals , Methamphetamine/pharmacology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Male , Mice , Receptors, Histamine H3/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Reward , Protein Multimerization/drug effects , Conditioning, Psychological/drug effects
2.
Brain Behav Immun ; 120: 167-180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834156

ABSTRACT

It is widely believed that the activation of the central dopamine (DA) system is crucial to the rewarding effects of methamphetamine (METH) and to the behavioral outcomes of METH use disorder. It was reported that METH exposure induced gasdermin D (GSDMD)-dependent pyroptosis in rats. The membrane pore formation caused by METH-induced pyroptosis may also contribute to the overflow of DA into the extracellular space and subsequently increase the DA levels in the brain. The present study firstly investigated whether the membrane pore information induced by GSDMD-dependent pyroptosis was associated with the increased DA levels in the ventral tegmental area (VAT) and nucleus accumbens (NAc) of rats self-administering METH and SY-SH5Y cells treated by METH. Subsequently, the effect of pore formation blockade or genetic inhibition of GSDMD on the reinforcing and motivational effect of METH was determined in rats, using the animal model of METH self-administration (SA). METH exposure significantly increased the activity of NLRP1/Cas-1/GSDMD pathway and the presence of pyroptosis, accompanied by the significantly increased DA levels in VTA and NAc. Moreover, intraperitoneal injections of disulfiram (DSF) or microinjection of rAAV-shGSDMD into VTA/NAc significantly reduced the reinforcing and motivational effect of METH, accompanied by the decreased level of DA in VTA and NAc. The results provided novel evidence that METH-induced pyroptosis could increase DA release in VTA and NAc via the NLRP1/Cas-1/GSDMD pathway. Additionally, membrane pores or GSDMD blockade could significantly reduce the reinforcing and motivational effect of METH. In conclusion, blocking GSDMD and membrane pore formation could be a promising potential target for the development of agents to treat METH use disorder.


Subject(s)
Dopamine , Methamphetamine , Nucleus Accumbens , Phosphate-Binding Proteins , Pyroptosis , Self Administration , Ventral Tegmental Area , Animals , Methamphetamine/pharmacology , Methamphetamine/administration & dosage , Pyroptosis/drug effects , Male , Phosphate-Binding Proteins/metabolism , Rats , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Dopamine/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Rats, Sprague-Dawley , Humans , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Gasdermins
3.
Neurosci Lett ; 823: 137630, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38215873

ABSTRACT

OBJECTIVE: Methamphetamine (METH) exposure commonly causes cognitive impairment. An angiotensin II receptor/neprilysin inhibitor (ARNI), LCZ696 has been demonstrated to inhibit inflammation, oxidative stress and apoptosis. The present study was designed to examine the effect of LCZ696 on METH-induced cognitive impairment and the underlying mechanism. METHODS: Following daily treatment of either saline or METH (5 mg/kg) for 5 consecutive days, the cognitive function was tested using the Y-maze and the Novel Object Recognition (NOR) in Experiment 1. In Experiment 2, mice were initially treated with saline or LCZ696 (60 mg/kg) for 9 consecutive days, followed by LCZ696, METH or saline for 5 days. Cognitive testing was carried out as Experiment 1. In Experiment 3, SH-SY5Y cells were treated with either METH (2.5 Mm) or ddH2O for 12 h. The apoptosis and reactive oxygen species (ROS) level of SH-SY5Y were examined. In Experiment 4, SH-SY5Y cells were pretreated with either ddH2O or LCZ696 (70um) for 30 min, followed by ddH2O or METH treatment for 12 h. Nrf2 and HO-1 protein expression was examined in the ventral tegemental area (VTA) of all the animals and SH-SY5Y cells. RESULTS: LCZ696 significantly improved METH-induced cognitive impairment, in conjunction with decreased apoptosis and ROS levels in VTA of METH-treated mice and SH-SY5Y cells. METH significantly decreased Nrf2 and HO-1 protein expression in VTA of mice and SH-SY5Y cells, which was reversed by LCZ696 treatment. CONCLUSION: LCZ696 yields a neuroprotective effect against METH-induced cognitive dysfunction via the Nrf2/HO-1 signaling pathway.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Cognitive Dysfunction , Methamphetamine , Neuroblastoma , Neuroprotective Agents , Valsartan , Animals , Humans , Methamphetamine/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2 , Cell Line, Tumor , Neuroblastoma/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Apoptosis , Drug Combinations
4.
Addict Biol ; 28(8): e13307, 2023 08.
Article in English | MEDLINE | ID: mdl-37500489

ABSTRACT

Methamphetamine (METH) use disorder is a chronic, relapsing disorder and involves frequent failures of self-control of drug seeking and taking. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compounds of green tea, which has shown great therapeutic effectiveness in neurological disorders. However, it is still unknown whether and how EGCG affects METH seeking behaviour. Here, we show nanostructured EGCG/ascorbic acid nanoparticles (EGCG/AA NPs) dose-dependently reduced METH self-administration (SA) under fixed-ratio 1 (FR1) and progressive ratio (PR) reinforcement schedules in mice and shifted METH dose-response curves downward. Furthermore, EGCG/AA NPs decreased drug- and cue-induced METH seeking. In addition, we found that METH SA led to a decrease in inhibitory postsynaptic currents (IPSCs) and increase in the AMPAR/NMDAR ratio and excitation/inhibition (E/I) ratio in ex vivo midbrain slices from ventral tegmental area (VTA) dopamine neurons. EGCG/AA NPs enhanced Gamma-aminobutyric acid (GABA)ergic inhibition and normalized the E/I ratio. EGCG restored the balance between excitation and inhibition in VTA dopamine neurons, which may contribute to the attenuation of METH SA. These findings indicate that EGCG is a promising pharmacotherapy for METH use disorder.


Subject(s)
Catechin , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Catechin/pharmacology , Reinforcement Schedule , Ascorbic Acid , Self Administration , Drug-Seeking Behavior
SELECTION OF CITATIONS
SEARCH DETAIL