Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Voice ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969543

ABSTRACT

OBJECTIVES: To compare the effects of telerehabilitation (TR) and face-to-face rehabilitation (FTF) methods on the outcomes of adults with voice disorders and to analyze the effectiveness of TR. METHODS: Following Boolean Logic, a search strategy was devised, combining subject terms and keywords based on the interventions and populations outlined in the inclusion criteria. We searched PubMed, Cochrane Library, Embase, Web of Science, Scopus, CNKI, Wanfang, CQVIP databases, and manually screened academic conference papers, journal articles, and gray literature to identify eligible randomized controlled trials (RCTs) on remote voice therapy. Two researchers assessed the risk of bias in the included studies using the risk of bias assessment tool for RCTs outlined in the Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0. RESULTS: Five trials with a total of 233 patients with voice disorders were included in the study after screening. The results revealed a significant difference in Jitter change values (mean difference [MD]=-0.12, 95%CI [-0.23,-0.01], P = 0.04) between TR and FTF, maximum phonation time (MD=0.76, 95%CI [-0.60,2.13], P = 0.27), Shimmer (MD=-0.04, 95%CI [-0.11,0.03], P = 0.27), voice handicap index (MD=0.87, 95%CI [-1.77,3.50], P = 0.52), and GRBAS(G) (MD=-0.00, 95%CI [-0.01,0.01], P = 0.99) had no significant difference. CONCLUSION: TR demonstrates comparable efficacy to FTF in voice treatment and is associated with higher levels of patient satisfaction, making it a viable and effective therapeutic modality. However, given the limited sample size analyzed in this study, further validation of this conclusion necessitates additional RCTs with larger sample sizes. Furthermore, researchers should remain cognizant of the constraints associated with TR and consistently refine treatment protocols to enhance the efficacy of voice therapy.

2.
J Glob Antimicrob Resist ; 38: 146-153, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866137

ABSTRACT

BACKGROUND: Streptococcus agalactiae is a recognized pathogen that primarily affects infants and pregnant women. However, its increasingly important role in causing invasive infections among non-pregnant adults has become a significant health concern due to the severity and variety of its clinical impacts. METHODS: Nonduplicate S. agalactiae clinical strains associated with clinical infections (n = 139) were isolated from non-pregnant adults in Shandong, China. Antibiotic susceptibility testing, whole-genome sequencing and genomic analyses were conducted to characterize the genome and identify resistance features of these strains. RESULTS: The strains exhibited universal susceptibility to penicillin, ampicillin, cefotaxime, meropenem, linezolid and vancomycin. Notably, high resistance rates were observed for erythromycin (91.4%), clindamycin (89.2%), levofloxacin (84.2%), tetracycline (54.0%) and, to a lesser extent, chloramphenicol (12.9%). Serotyping revealed seven serotypes and one non-typeable strain. Serotypes Ia, Ib, III and V predominated, representing 95.7% of the strains. Nineteen sequence types were categorized into seven clonal complexes, with CC10 being the most prevalent at 48.9%. The resistance genes mreA (100%), ermB (70.5%) and tetM (46.0%) were commonly detected. All the isolates carried at least one pilus backbone determinant and one alpha-like protein gene, with the PI-1+PI-2a and the bca gene being the most frequent at 84.2% and 54.7%, respectively. CONCLUSIONS: While S. agalactiae strains in non-pregnant adults retain sensitivity to ß-lactam antibiotics, the elevated resistance to erythromycin, clindamycin, levofloxacin and tetracycline is concerning. Given the growing elderly population worldwide, the burden of S. agalactiae infections is significant. Continuous surveillance of serotype distribution and antibiotic resistance patterns is imperative for targeted prevention and therapeutic strategies.

3.
Arch Oral Biol ; 163: 105963, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608563

ABSTRACT

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.


Subject(s)
Bone Morphogenetic Protein 2 , Core Binding Factor Alpha 1 Subunit , Ion Channels , Osteoblasts , Osteogenesis , Osteoblasts/metabolism , Ion Channels/metabolism , Animals , Mice , Bone Morphogenetic Protein 2/metabolism , Osteogenesis/physiology , Core Binding Factor Alpha 1 Subunit/metabolism , Osteoclasts/metabolism , Real-Time Polymerase Chain Reaction , RANK Ligand/metabolism , Blotting, Western , Stress, Mechanical , Cell Differentiation , Osteocalcin/metabolism , Alkaline Phosphatase/metabolism , Oligopeptides/pharmacology , Tooth Movement Techniques , Mechanotransduction, Cellular/physiology , Cell Line , Bone Remodeling/physiology , Pyrazines , Spider Venoms , Thiadiazoles , Intercellular Signaling Peptides and Proteins
4.
Neural Plast ; 2024: 2512796, 2024.
Article in English | MEDLINE | ID: mdl-38585306

ABSTRACT

Background: Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives: This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods: This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results: The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion: Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Aged , Middle Aged , Humans , Recovery of Function , Stroke/therapy , Upper Extremity , Treatment Outcome
6.
Food Funct ; 15(7): 3463-3478, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38456333

ABSTRACT

Currently, the clinical efficacy of anti-PD-1/PD-L1 monotherapy strategies against breast cancer is limited, and low response rates need to be improved. Gut microbiota plays a crucial role in the sensitization process of immunotherapy. As a natural dietary supplement, fucoidan has been reported to have immunomodulatory effects, while some studies have found that oral fucoidan may act as a potential prebiotic to modulate the gut microbiota. Therefore, this study investigated whether fucoidan could enhance the effects of anti-PD-1 monoclonal antibody antitumor immunotherapy by modulating gut microbiota and its metabolites. We found that the anti-tumor effect of the combination treatment was significantly enhanced, while fucoidan significantly improved the composition of the gut microbiota by increasing the number of potentially beneficial bacteria, such as Bifidobacterium, Faecalibaculum and Lactobacillus. Interference with the gut microbiota by antibiotics revealed impaired antitumor efficacy, confirming the necessity of gut microbiota in the antitumor effects of fucoidan in vivo. Metabolomics further revealed that fucoidan may have reversed the metabolic disturbances induced by the breast cancer model through tryptophan metabolism and glycerophospholipid metabolism pathways, with the most significant increase in the content of short-chain fatty acids, especially acetic and butyric acids. These modulations improved the function of effector T cells and suppressed Treg cell production. Thus, our findings suggest that fucoidan combined with the anti-PD-1 monoclonal antibody may be a novel strategy to sensitize breast cancer patients to anti-PD-1 monoclonal antibody immunotherapy. Meanwhile, the gut microbiota might serve as a new biomarker to predict the anti-PD-1 monoclonal antibody response to breast cancer immunotherapy.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Polysaccharides , Humans , Female , Breast Neoplasms/drug therapy , Immunotherapy , Antibodies, Monoclonal/pharmacology
7.
J Am Acad Child Adolesc Psychiatry ; 63(1): 65-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37406770

ABSTRACT

OBJECTIVE: White matter alterations are frequently reported in autism spectrum disorder (ASD), yet the etiology is currently unknown. The objective of this investigation was to examine, for the first time, the impact of genetic and environmental factors on white matter microstructure in twins with ASD compared to control twins without ASD. METHOD: Diffusion-weighted MRIs were obtained from same-sex twin pairs (6-15 years of age) in which at least 1 twin was diagnosed with ASD or neither twin exhibited a history of neurological or psychiatric disorders. Fractional anisotropy (FA) and mean diffusivity (MD) were examined across different white matter tracts in the brain, and statistical and twin modeling were completed to assess the proportion of variation associated with additive genetic (A) and common/shared (C) or unique (E) environmental factors. We also developed a novel Twin-Pair Difference Score analysis method that produces quantitative estimates of the genetic and environmental contributions to shared covariance between different brain and behavioral traits. RESULTS: Good-quality data were available from 84 twin pairs, 50 ASD pairs (32 concordant for ASD [16 monozygotic; 16 dizygotic], 16 discordant for ASD [3 monozygotic; 13 dizygotic], and 2 pairs in which 1 twin had ASD and the other exhibited some subthreshold symptoms [1 monozygotic; 1 dizygotic]) and 34 control pairs (20 monozygotic; 14 dizygotic). Average FA and MD across the brain, respectively, were primarily genetically mediated in both control twins (A = 0.80, 95% CI [0.57, 1.02]; A = 0.80 [0.55, 1.04]) and twins concordant for having ASD (A = 0.71 [0.33, 1.09]; A = 0.84 [0.32,1.36]). However, there were also significant tract-specific differences between groups. For instance, genetic effects on commissural fibers were primarily associated with differences in general cognitive abilities and perhaps some diagnostic differences for ASD because Twin-Pair Difference-Score analysis indicated that genetic factors may have contributed to ∼40% to 50% of the covariation between IQ scores and FA of the corpus callosum. Conversely, the increased impact of environmental factors on some projection and association fibers were primarily associated with differences in symptom severity in twins with ASD; for example, our analyses suggested that unique environmental factors may have contributed to ∼10% to 20% of the covariation between autism-related symptom severity and FA of the cerebellar peduncles and external capsule. CONCLUSION: White matter alterations in youth with ASD are associated with both genetic contributions and potentially increased vulnerability or responsivity to environmental influences. DIVERSITY & INCLUSION STATEMENT: We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper self-identifies as living with a disability. The author list of this paper includes contributors from the location and/or community where the research was conducted and they participated in the data collection, design, analysis, and/or interpretation of the work.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , White Matter , Male , Female , Humans , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , White Matter/diagnostic imaging , Twins, Monozygotic/genetics , Brain/diagnostic imaging , Autistic Disorder/genetics
8.
J Vis Exp ; (197)2023 07 21.
Article in English | MEDLINE | ID: mdl-37677029

ABSTRACT

The alveolar bone, with a high turnover rate, is the most actively-remodeling bone in the body. Orthodontic tooth movement (OTM) is a common artificial process of alveolar bone remodeling in response to mechanical force, but the underlying mechanism remains elusive. Previous studies have been unable to reveal the precise mechanism of bone remodeling in any time and space due to animal model-related restrictions. The signal transducer and activator of transcription 3 (STAT3) is important in bone metabolism, but its role in osteoblasts during OTM is unclear. To provide in vivo evidence that STAT3 participates in OTM at specific time points and in particular cells during OTM, we generated a tamoxifen-inducible osteoblast lineage-specific Stat3 knockout mouse model, applied orthodontic force, and analyzed the alveolar bone phenotype. Micro-computed tomography (Micro-CT) and stereo microscopy were used to access OTM distance. Histological analysis selected the area located within three roots of the first molar (M1) in the cross-section of the maxillary bone as the region of interest (ROI) to evaluate the metabolic activity of osteoblasts and osteoclasts, indicating the effect of orthodontic force on alveolar bone. In short, we provide a protocol for using inducible osteoblast lineage-specific Stat3 knockout mice to study bone remodeling under orthodontic force and describe methods for analyzing alveolar bone remodeling during OTM, thus shedding new light on skeletal mechanical biology.


Subject(s)
STAT3 Transcription Factor , Tooth Movement Techniques , Mice , Animals , Mice, Knockout , STAT3 Transcription Factor/genetics , X-Ray Microtomography , Bone Remodeling , Disease Models, Animal
9.
J Am Chem Soc ; 145(24): 13195-13203, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37305923

ABSTRACT

Polymer/metal-organic framework (MOF) composites have been widely studied for their favorable combination of polymer flexibility and MOF crystallinity. While traditional polymer-coated MOFs maximize the polymer properties at the surface, the dramatic loss of MOF porosity due to blockage by the nonporous polymeric coating remains a problem. Herein, we introduce intrinsically microporous synthetic allomelanin (AM) as a porous coating on the zirconium-based MOF (Zr-MOF) UiO-66 via an in situ surface-constrained oxidative polymerization of the AM precursor, 1,8-dihydroxynaphthalene (1,8-DHN). Transmission electron microscopy images verify the formation of well-defined nanoparticles with a core-shell morphology (AM@UiO-66), and nitrogen sorption isotherms indicate the porosity of the UiO-66 core remains constant and is not disturbed by the AM coating. Notably, such a strategy could be adapted to MOFs with larger pores, such as MOF-808 by generating porous AM polymer coatings from bulkier DHN oligomers, highlighting the versatility of this method. Finally, we showed that by tuning the AM coating thickness on UiO-66, the hierarchically porous structures of these AM@UiO-66 composites engender excellent hexane isomer separation selectivity and storage capacity.

10.
Microorganisms ; 11(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37317299

ABSTRACT

An increase in the carbapenem-hydrolyzing capacity of class D ß-lactamase has been observed in strains of multiple species, posing a significant challenge to the control of antibiotic resistance. In this study, we aimed to investigate the genetic diversity and phylogenetic characteristics of new blaOXA-48-like variants derived from Shewanella xiamenensis. Three ertapenem-non-susceptible S. xiamenensis strains were identified, one isolated from the blood sample of an inpatient, the other two isolated from the aquatic environment. Phenotypic characterization confirmed that the strains were carbapenemase producers and exhibited antimicrobial resistance patterns to ertapenem, with some showing lower susceptibility to imipenem, chloramphenicol, ciprofloxacin, and tetracycline. No significant resistance to cephalosporins was observed. Sequence analysis revealed that one strain harbored blaOXA-181 and the other two strains harbored blaOXA-48-like genes, with open reading frame (ORF) similarities with blaOXA-48 ranging from 98.49% to 99.62%. The two novel blaOXA-48-like genes, named blaOXA-1038 and blaOXA-1039, respectively, were cloned and expressed in E. coli. The three OXA-48-like enzymes demonstrated significant hydrolysis activity against meropenem, and the classical ß-lactamase inhibitor had no significant inhibitory effect. In conclusion, this study demonstrated the diversity of the blaOXA gene and highlighted the emergence of novel OXA carbapenemases in S. xiamenensis. Further attention to S. xiamenensis and OXA carbapenemases is recommended for the effective prevention and control of antibiotic-resistant bacteria.

11.
J Colloid Interface Sci ; 645: 685-693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37167917

ABSTRACT

The structural defects and oxygen-containing functional groups of carbon materials as electrode materials for supercapacitors or capacitive deionization devices are critical to their electrochemical performance. The tuning of surface oxygen-containing functional groups and carbon defects during pyrolysis is key to achieve a high performance in ion storage. Herein, quinonyl-dominant defective porous carbon is prepared by a pyrolysis and cross-linking route using lavender stem and potassium acetate as precursor. Benefiting from the presence of abundant defect and surface quinonyl groups, porous carbon shows an ultra-high specific capacitance of 401 F g-1 (1 A g-1) and a high capacitance retention of 63% at a high current density of 100 A g-1 in a KOH solution. Meanwhile, as a capacitive deionization electrode material, it also exhibited a high adsorption capacity of 25.5 mg g-1 in 500 mg L-1 NaCl solution at 1.2 V. Theoretical density functional theory (DFT) calculation demonstrates that surface quinonyl groups and carbon defects can synergistically facilitate the adsorption of K+ and Na+ during the charge/discharge process. This work provides a new perspective for understanding the role of surface oxygen-containing groups and intrinsic defects of porous carbon materials in electrochemical energy storage and desalination applications.

12.
Angew Chem Int Ed Engl ; 62(29): e202305526, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37208812

ABSTRACT

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers. We report the synthesis of the MOF NU-1700, assembled from U4+ -paddlewheel nodes and catecholate-based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers-a first among uranium materials-as a result of extensive characterization via powder X-ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

13.
Front Microbiol ; 14: 1138039, 2023.
Article in English | MEDLINE | ID: mdl-36937303

ABSTRACT

Streptococcus agalactiae (Group B Streptococcus, GBS) is a major cause of neonatal infections with high morbidity and mortality, and clindamycin is the main antibiotic used to treat GBS infections in patients allergic to penicillin. We aimed to analyse the antibiotic sensitivity, sequence types, serotypes, virulence factors, and antibiotic resistance mechanisms of clinically isolated clindamycin-resistant S. agalactiae and provide basic data for the treatment, prevention, and control of clinical infection of S. agalactiae. A total of 110 strains of clindamycin-resistant S. agalactiae were collected from two tertiary hospitals in Hebei, China. We performed antibiotic sensitivity tests for 11 antibiotics on these strains and whole-genome sequencing analysis. All the strains were susceptible to penicillin, ampicillin, linezolid, vancomycin, tigecycline, and quinupristin-dalfopristin. Resistance to erythromycin, levofloxacin, tetracycline, and chloramphenicol were also observed. Genome sequence analysis revealed that all strains belonged to 12 sequence types (STs) related to six cloning complexes (CCs), namely CC10, CC19, CC23, CC651, CC1, and CC17. Five serotypes were identified, including IA, IB, II, III, and V. The most prominent resistance genes were mreA (100%) and ermB (81.8%). Furthermore, cfb, cylE, pavA and the gene cluster related to the pili were 100% present in all strains, followed by lmb (95.5%) and srr1 (67.2%). This study found that clindamycin-resistant S. agalactiae showed polymorphisms in molecular types and serotypes. Furthermore, multiple virulence factor genes have been identified in their genomes.

14.
J Colloid Interface Sci ; 636: 33-41, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36621127

ABSTRACT

Porous carbons have been widely applied for capacitive energy storage, yet usually suffer from insufficient rate performance because of the sluggish ion transport kinetics in deep and multi-branched pores. Herein, we fabricated an interconnected microporous capacitive carbon (IMCC) by growing D (+)-glucosamine on bacterial cellulose (BC) nanofibers scaffold, followed by carbonization and activation. The BC nanofibers acted as a sacrificial template during pre-carbonization, facilitating the subsequent KOH permeation and homogeneous activation. By taking advantage of the interconnected microporous structure, the IMCC delivers a high capacitance of 302 F g-1 at 1 A g-1 and an excellent rate capability of 165 F g-1 at 100 A g-1 for aqueous supercapacitor, demonstrating its fast ion transport capability. Impressively, it also shows a superior gravimetric capacity of 177 mAh g-1 at 0.5 A g-1 and remains a high value of 72 mAh g-1 at 20 A g-1 as a cathode material for Zn-ion hybrid capacitor. This facile and cost-effective design strategy exhibits a great potential to construct carbohydrates-derived interconnected microporous carbon materials for high-rate energy storage.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Carbon/chemistry , Water , Electric Capacitance , Bacteria
15.
J Bone Miner Res ; 38(1): 214-227, 2023 01.
Article in English | MEDLINE | ID: mdl-36370067

ABSTRACT

Mechanical force is essential to shape the internal architecture and external form of the skeleton by regulating the bone remodeling process. However, the underlying mechanism of how the bone responds to mechanical force remains elusive. Here, we generated both orthodontic tooth movement (OTM) model in vivo and a cyclic stretch-loading model in vitro to investigate biomechanical regulation of the alveolar bone. In this study, signal transducer and activator of transcription 3 (STAT3) was screened as one of the mechanosensitive proteins by protein array analysis of cyclic stretch-loaded bone mesenchymal stem cells (BMSCs) and was also proven to be activated in osteoblasts in response to the mechanical force during OTM. With an inducible osteoblast linage-specific Stat3 knockout model, we found that Stat3 deletion decelerated the OTM rate and reduced orthodontic force-induced bone remodeling, as indicated by both decreased bone resorption and formation. Both genetic deletion and pharmacological inhibition of STAT3 in BMSCs directly inhibited mechanical force-induced osteoblast differentiation and impaired osteoclast formation via osteoblast-osteoclast cross-talk under mechanical force loading. According to RNA-seq analysis of Stat3-deleted BMSCs under mechanical force, matrix metalloproteinase 3 (Mmp3) was screened and predicted to be a downstream target of STAT3. The luciferase and ChIP assays identified that Stat3 could bind to the Mmp3 promotor and upregulate its transcription activity. Furthermore, STAT3-inhibitor decelerated tooth movement through inhibition of the bone resorption activity, as well as MMP3 expression. In summary, our study identified the mechanosensitive characteristics of STAT3 in osteoblasts and highlighted its critical role in force-induced bone remodeling during orthodontic tooth movement via osteoblast-osteoclast cross-talk. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Matrix Metalloproteinase 3 , Humans , Matrix Metalloproteinase 3/metabolism , Tooth Movement Techniques , STAT3 Transcription Factor/metabolism , Periodontal Ligament/metabolism , Bone Remodeling/physiology , Bone Resorption/metabolism , Osteoclasts/metabolism
16.
ACS Nano ; 16(11): 19087-19095, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36343336

ABSTRACT

Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies. Hydrophobicity is conferred by introducing amine-terminated alkyl groups with different chain lengths. We demonstrate that the resulting hydrophobic allomelanin nanoparticles undergo air/water interfacial self-assembly in a controlled fashion, which enables the generation of large-scale and uniform structural colors. This work provides an efficient and tunable surface chemistry modification strategy to broaden the scope of synthetic melanin structure and function beyond the known diversity found in nature.


Subject(s)
Melanins , Nanoparticles , Melanins/chemistry , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Water/chemistry , Amines
17.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36395424

ABSTRACT

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

18.
Stem Cell Res Ther ; 13(1): 486, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36175952

ABSTRACT

Dental follicles are necessary for tooth eruption, surround the enamel organ and dental papilla, and regulate both the formation and resorption of alveolar bone. Dental follicle progenitor cells (DFPCs), which are stem cells found in dental follicles, differentiate into different kinds of cells that are necessary for tooth formation and eruption. Runt-related transcription factor 2 (Runx2) is a transcription factor that is essential for osteoblasts and osteoclasts differentiation, as well as bone remodeling. Mutation of Runx2 causing cleidocranial dysplasia negatively affects osteogenesis and the osteoclastic ability of dental follicles, resulting in tooth eruption difficulties. Among a variety of cells and molecules, Nel-like molecule type 1 (Nell-1) plays an important role in neural crest-derived tissues and is strongly expressed in dental follicles. Nell-1 was originally identified in pathologically fused and fusing sutures of patients with unilateral coronal synostosis, and it plays indispensable roles in bone remodeling, including roles in osteoblast differentiation, bone formation and regeneration, craniofacial skeleton development, and the differentiation of many kinds of stem cells. Runx2 was proven to directly target the Nell-1 gene and regulate its expression. These studies suggested that Runx2/Nell-1 axis may play an important role in the process of tooth eruption by affecting DFPCs. Studies on short and long regulatory noncoding RNAs have revealed the complexity of RNA-mediated regulation of gene expression at the posttranscriptional level. This ceRNA network participates in the regulation of Runx2 and Nell-1 gene expression in a complex way. However, non-study indicated the potential connection between Runx2 and Nell-1, and further researches are still needed.


Subject(s)
Calcium-Binding Proteins , Core Binding Factor Alpha 1 Subunit , Tooth Eruption , Bone Remodeling/genetics , Calcium-Binding Proteins/genetics , Cell Differentiation/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dental Sac/metabolism , Humans , Osteogenesis/genetics , RNA , Stem Cells/metabolism , Tooth Eruption/genetics , Transcription Factors/genetics
19.
J Am Chem Soc ; 144(15): 6674-6680, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35385280

ABSTRACT

Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.


Subject(s)
Metal-Organic Frameworks , Nerve Agents , Catalysis , Metal-Organic Frameworks/chemistry , Microscopy, Electron, Transmission , Nerve Agents/chemistry , Solvents
20.
Angew Chem Int Ed Engl ; 61(24): e202117528, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35353429

ABSTRACT

Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium-based metal-organic framework (Zr-MOF) UiO-66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono-methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2 and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO-66 undergoes an intriguing transformation into MIL-140A, which is another Zr-MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr-MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long-standing challenges associated with plastic waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...