Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 251: 114527, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36628874

ABSTRACT

The aims of this study were to evaluated the effect and underlying mechanism of Gandankang (GDK) aqueous extract in alleviating the acute liver injury induced by carbon tetrachloride (CCl4) in vivo and in vitro. Mice were divided into 5 groups (n = 8) for acute (Groups: control, 0.3 % CCl4, BD (Bifendate), 1.17, 2.34 and 4.68 mg/kg GDK) liver injury study. 10 µL/g CCl4 with corn oil were injected interperitoneally (i.p) expect the control group. HepG2 cells were used in vitro study. The results showed GDK can effectively inhibit liver damage and restore the structure and function of the liver. In mechanism, GDK inhibited CCl4-induced liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response; and inhibited CCl4-induced oxidative stress by upregulating the Keap1/Nrf2 pathway-related proteins and promoting the synthesis of several antioxidants. Additionally, it inhibited ferroptosis in the liver by regulating the expression of ACSl4 and GPX4. GDK reduced lipid peroxide generation in vitro by downregulating the production of reactive oxygen species and Fe2+ aggregation, thereby inhibiting ferroptosis and alleviating CCl4-induced hepatocyte injury. In conclusion, we describe the potential complex mechanism underlying the effect of GDK against acute liver injury.


Subject(s)
Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Mice , Animals , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Liver , Antioxidants/metabolism , Oxidative Stress , Signal Transduction , Chemical and Drug Induced Liver Injury/metabolism
2.
Ecotoxicol Environ Saf ; 245: 114118, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36174321

ABSTRACT

Mori fructus aqueous extracts (MFAEs) have been used as a traditional Chinese medicine for thousands of years with the function of strengthening the liver and tonifying the kidney. However, its inner mechanism to alleviative renal injury is unclear. To investigate the attenuation of MFAEs on nephrotoxicity and uncover its potential molecular mechanism, we established a nephrotoxicity model induced by carbon tetrachloride (CCl4). The mice were randomly divided into control group, CCl4 model group (10% CCl4), CCl4 + low and high MFAEs groups (10% CCl4 + 100 mg/kg and 200 mg/kg MFAEs). We found that MFAEs decreased the kidney index of mice, restored the pathological changes of renal structure induced by CCl4, reduced cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (Kim-1) blood urea nitrogen and creatinine contents in serum, promoted the nuclear transportation of Nrf2 (nuclear factor erythroid derived 2 like 2), elevated the expression of HO-1 (heme oxygenase 1), GPX4 (glutathione peroxidase 4), SLC7A11 (solute carrier family 7 member 11), ZO-1 (zonula occludens-1) and Occludin, suppressed the expression of Keap1 (kelch-like ECH-associated protein 1), HMGB1 (High Mobility Group Protein 1), ACSL4 (acyl-CoA synthetase long chain family member 4) and TXNIP (thioredoxin interacting protein), upregulated the flora of Akkermansia, Anaerotruncus, Clostridium_sensu_stricto, Ihubacter, Alcaligenes, Dysosmobacter, and downregulated the flora of Clostridium_XlVa, Helicobacter, Paramuribaculum. Overlapped with Disbiome database, Clostridium_XlVa, Akkermansia and Anaerotruncus may be the potential genera treated with renal injury. It indicated that MFAEs could ameliorate kidney injury caused by CCl4 via Nrf2 signaling.


Subject(s)
Gastrointestinal Microbiome , HMGB1 Protein , Animals , Carbon Tetrachloride/metabolism , Carbon Tetrachloride/toxicity , Coenzyme A/metabolism , Creatinine , Cystatin C/metabolism , HMGB1 Protein/metabolism , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Ligases/metabolism , Lipocalin-2/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Occludin/metabolism , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL