Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 06 10.
Article in English | MEDLINE | ID: mdl-37372425

ABSTRACT

Eggplant verticillium wilt, caused by Verticillium spp., is a severe eggplant vascular disease. Solanum sisymbriifolium, a wild species of eggplant that is resistant to verticillium wilt, will be beneficial for genetically modifying eggplants. To better reveal the response of wild eggplant to verticillium wilt, proteomic analysis by iTRAQ technique was performed on roots of S. sisymbriifolium after exposure to Verticillium dahliae, and some selected proteins were also validated using parallel reaction monitoring (PRM). After inoculation with V. dahliae, the phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD) enzymes and the malondialdehyde (MDA) and soluble protein (SP) of S. sisymbriifolium roots all exhibited an increase in activity or content compared with that of the mock-inoculated plants, especially at 12 and 24 h post-inoculation (hpi). A total of 4890 proteins (47.04% of the proteins were from S. tuberosum and 25.56% were from S. lycopersicum according to the species annotation) were identified through iTRAQ and LC-MS/MS analysis. A total of 369 differentially expressed proteins (DEPs) (195 downregulated and 174 upregulated) were obtained by comparison of the control and treatment groups at 12 hpi, and 550 DEPs (466 downregulated and 84 upregulated) were obtained by comparison of the groups at 24 hpi. The most significant Gene Ontology (GO) enrichment terms at 12 hpi were regulation of translational initiation, oxidation-reduction, and single-organism metabolic process in the biological process group; cytoplasm and eukaryotic preinitiation complex in the cellular component group; and catalytic activity, oxidoreductase activity, and protein binding in the molecular function group. Small molecule metabolic, organophosphate metabolic, and coenzyme metabolic processes in the biological process group; the cytoplasm in the cellular component group; and catalytic activity and GTPase binding in the molecular function group were significant at 24 hpi. Then, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis was performed, and 82 and 99 pathways (15 and 17, p-value < 0.05) were found to be enriched at 12 and 24 hpi, respectively. Selenocompound metabolism, ubiquinone, and other terpenoid-quinone biosyntheses, fatty acid biosynthesis, lysine biosynthesis, and the citrate cycle were the top five significant pathways at 12 hpi. Glycolysis/gluconeogenesis, biosynthesis of secondary metabolites, linoleic acid metabolism, pyruvate metabolism, and cyanoamino acid metabolism were the top five at 24 hpi. Some V. dahliae-resistance-related proteins, including phenylpropanoid-pathway-related proteins, stress and defense response proteins, plant-pathogen interaction pathway and pathogenesis-related proteins, cell wall organization and reinforcement-related proteins, phytohormones-signal-pathways-related proteins, and other defense-related proteins were identified. In conclusion, this is the first proteomic analysis of S. sisymbriifolium under V. dahliae stress.


Subject(s)
Ascomycota , Solanum melongena , Solanum , Solanum melongena/genetics , Solanum/genetics , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry
2.
Mitochondrial DNA B Resour ; 7(5): 886-888, 2022.
Article in English | MEDLINE | ID: mdl-35692713

ABSTRACT

Solanum sisymbriifolium is a critical wild eggplant resource with resistance to many serious diseases that affect eggplant production. In this study, the chloroplast genome of S. sisymbriifolium was successfully sequenced using Illumina high-throughput sequencing technology. The length of the complete chloroplast genome is 155,771 bp, and its GC content is 37.76%. There is a large single-copy region (86,404 bp), a small single-copy region (18,525 bp), and a pair of inverted repeat regions (25,421 bp) in the chloroplast genome. A total of 128 coding genes were annotated in the entire chloroplast genome, including 83 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The phylogenetic tree of 17 complete chloroplast genomes shows that S. sisymbriifolium is closely related to Solanum wrightii.

3.
Physiol Mol Biol Plants ; 25(4): 1009-1027, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31402823

ABSTRACT

Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a devastating disease of eggplant (Solanum spp.) and causes substantial losses worldwide. Although some genes or biological processes involved in the interaction between eggplant and V. dahliae have been identified in some studies, the underlying molecular mechanism is not yet clear. Here, we monitored the transcriptomic profiles of the roots of resistant S. sisymbriifolium plants challenged with V. dahliae. Based on the measurements of physiological indexes (T-SOD, POD and SSs), three time points were selected and subsequently divided into two stages (S_12 h vs. S_0 h and S_48 h vs. S_12 h). KEGG enrichment analysis of the DEGs revealed several genes putatively involved in regulating plant-V. dahliae interactions, including mitogen-activated protein kinase (MAPK) genes (MEKK1 and MAP2K1), WRKY genes (WRKY22 and WRKY33) and cytochrome P450 (CYP) genes (CYP73A/C4H, CYP98A/C3'H and CYP84A/F5H). In addition, a subset of genes that play an important role in activating V. dahliae defence responses, including Ve genes as well as genes encoding PR proteins and TFs, were screened and are discussed. These results will help to identify key resistance genes and will contribute to a further understanding of molecular mechanisms of the S. sisymbriifolium resistance response to V. dahliae.

SELECTION OF CITATIONS
SEARCH DETAIL
...