Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Transl Autoimmun ; 8: 100239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38550612

ABSTRACT

Objectives: Antibodies to gp210 and sp100 are specific and unique anti-nuclear autoantibodies (ANAs) associated with primary biliary cholangitis (PBC). Importantly the presence of anti-gp210 and anti-sp100 responses is indicative of poor clinical outcomes. However, the utility of measuring titers of these antibodies remains unclear. Materials and methods: Using the in-house purified gp210 (HSA108-C18) and sp100 (amino acid position 296-386), we quantitatively measured serum autoantibodies to gp210 and sp100 using chemiluminescence immunoassay (CLIA) in a very large cohort of 390 patients with PBC, including 259 cases with no prior ursodesoxycholic acid (UDCA) treatment and 131 cases with UDCA treatment. We also analyzed serial changes in anti-gp210 and anti-sp100 levels in 245 sequential samples from 88 patients. Results: In our cross-sectional analysis, we detected anti-gp210 immunoglobulin G (IgG) and anti-sp100 IgG autoantibodies in 129 out of 390 (33.1%) and 80 out of 390 (20.5%) PBC patients, respectively. Multivariate analysis revealed that serum IgG (st.ß = 0.35, P = 0.003) and gamma-glutamyltransferase (GGT) (st.ß = 0.23, P = 0.042) levels at baseline were independently associated with anti-gp210 concentrations. In serial testing, we observed significant fluctuations in anti-gp210 antibody levels. These fluctuations reflected responsiveness to UDCA therapy, particularly in anti-gp210-positive patients with initially lower concentrations in the stages of disease. Conclusions: Our study reflects that quantitative changes of anti-gp210 antibody are indicative of UDCA responses. There is a great need for newer metrics in PBC and we suggest that a more detailed and longer study of these unique ANAs is warranted.

2.
Biomed Eng Online ; 23(1): 36, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504231

ABSTRACT

BACKGROUND: The reduced treatment time of dental implants with immediate loading protocol is an appealing solution for dentists and patients. However, there remains a significant risk of early peri-implant bone response following the placement of immediately loaded implants, and limited information is available regarding loading directions and the associated in vivo characteristics of peri-implant bone during the early stages. This study aimed to investigate the effects of immediate loading directionality on the expression of mechanical sensing protein PIEZO1 and the healing process of peri-implant bone in the early stage. METHODS: Thirty-two implants were inserted into the goat iliac crest models with 10 N static lateral immediate loading applied, followed by histological, histomorphological, immunohistochemical, X-ray microscopy and energy dispersive X-ray spectroscopy evaluations conducted after 10 days. RESULTS: From evaluations at the cellular, tissue, and organ levels, it was observed that the expression of mechanical sensing protein PIEZO1 in peri-implant bone was significantly higher in the compressive side compared to the tensile side. This finding coincided with trends observed in interfacial bone extracellular matrix (ECM) contact percentage, bone mass, and new bone formation. CONCLUSIONS: This study provides a novel insight into the immediate loading directionality as a potential influence factor for dental implant treatments by demonstrating differential effects on the mechanical sensing protein PIEZO1 expression and related early-stage healing processes of peri-implant bone. Immediate loading directions serve as potential therapeutic influence factors for peri-implant bone during its early healing stage.


Subject(s)
Dental Implants , Wound Healing , Humans , Prostheses and Implants , Ion Channels
3.
Ther Adv Med Oncol ; 16: 17588359231220607, 2024.
Article in English | MEDLINE | ID: mdl-38282662

ABSTRACT

Background: Circulating tumor DNA (ctDNA) has emerged as a biomarker that can define the risk of recurrence after curative-intent surgery for patients with colorectal cancer (CRC). However, beyond the predictive power of postoperative ctDNA detection, the efficacy and potential limitations of ctDNA detection urgently need to be fully elucidated in a large cohort of CRC. Objectives: To define potentially cured CRC patients through ctDNA monitoring following surgery. Design: A prospective, multicenter, observational study. Methods: We enrolled 309 patients with stages I-IV CRC who underwent definitive surgery. Tumor tissues were sequenced by a custom-designed next-generation sequencing panel to identify somatic mutations. Plasma was analyzed using a ctDNA-based molecular residual disease (MRD) assay which integrated tumor-genotype-informed and tumor-genotype-naïve ctDNA analysis. The turnaround time of the assay was 10-14 days. Results: Postoperative ctDNA was detected in 5.4%, 13.8%, 15%, and 30% of patients with stage I, II, III, and IV disease, respectively, and in 17.5% of all longitudinal samples. Patients with positive postsurgery MRD had a higher recurrence rate than those with negative postsurgery MRD [hazard ratio (HR), 13.17; p < 0.0001], producing a sensitivity of 64.6%, a specificity of 94.8%, a positive predictive value (PPV) of 75.6%, and a negative predictive value (NPV) of 91.5%. Furthermore, patients with positive longitudinal MRD also had a significantly higher recurrence rate (HR, 14.44; p < 0.0001), with increased sensitivity (75.0%), specificity (94.9%), PPV (79.6%), and NPV (93.4%). Subgroup analyses revealed that adjuvant therapy did not confer superior survival for patients with undetectable or detectable MRD. In addition, MRD detection was less effective in identifying lung-only and peritoneal metastases. Conclusion: Postoperative ctDNA status is a strong predictor of recurrence independent of stage and microsatellite instability status. Longitudinal undetectable MRD could be used to define the potentially cured population in CRC patients undergoing curative-intent surgery.

4.
Front Microbiol ; 14: 1286064, 2023.
Article in English | MEDLINE | ID: mdl-38075869

ABSTRACT

Introduction: The depolymerization of lignocellulose biomass by white-rot fungi has been an important research topic. However, few simulated in-situ analyses have been conducted to uncover the decay. Methods: In this study, the white-rot Lentinula edodes was used to colonize the wood and non-wood substrates, and then hyphal transcriptional response and substrate degradation were analyzed during the spatial-temporal colonization on different type substrates to better understand the depolymerization of lignocellulose. Results and discussion: Faster growth and thicker mat of hyphae on corn stalk were observed in comparison to oak wafer. Coincide with the higher levels of gene transcripts related to protein synthesis on corn stalk. The higher lignin oxidase activity of hyphae was detected on oak wafer, and the higher cellulase activity was observed on corn stalk containing a much higher content of soluble sugars. A large number of carbohydrate-binding module (CBM1 and CBM20)-containing enzyme genes, including lytic polysaccharide monooxygenase (AA9), cellobiohydrolase (GH6 and GH7), glucanase (GH5), xylanase (GH10 and GH11), glucoamylase (GH15), and alpha-amylase (GH13), were significantly upregulated in the back-distal hyphae colonized on corn stalk. The hyphae tended to colonize and degrade the secondary cell wall, and the deposited oxalate crystal suggested that oxalate may play an important role during lignocellulose degradation. In addition, lignin was degraded in priority in oak wafer. Of note, three lignin monomers were degraded simultaneously in oak wafer but sequentially in corn stalk. This growth Our results indicated that the white-rot degradation pattern of lignocellulose is determined by the chemical composition and structure of the colonized biomass.

5.
Cancer Cell ; 41(10): 1763-1773.e4, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37816331

ABSTRACT

The value of circulating tumor DNA (ctDNA) during chemoradiotherapy (CRT) remains unclear but is critical for detecting molecular residual disease (MRD). In this prospective study, we sequenced 761 blood samples from 139 patients with locally advanced non-small cell lung cancer treated with definitive radiation therapy (RT). ctDNA concentrations showed a significantly declining trend as CRT progressed at on-RT and after-RT time points versus baseline. Thirty-eight (27.3%) patients with early undetectable ctDNA at both on-RT (RT reached 40 Gy) and after-RT time points, indicating early response to CRT, had better survival outcomes for both with or without consolidation immune checkpoint inhibitors. Longitudinal undetectable MRD was found in 20.1% patients. The 2-year cancer-specific progression-free survival of these patients was 88.4%, corresponding to a potentially cured population. Further analysis revealed that pretreatment ctDNA variants serve as an essential MRD informed source. These data provide clinical insights for ctDNA-MRD detection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Circulating Tumor DNA/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prospective Studies , Chemoradiotherapy , Biomarkers, Tumor/genetics
6.
BMC Gastroenterol ; 23(1): 280, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573302

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have been identified as important regulatory factors implicated in a wide array of diseases, including various forms of cancer. However, the roles of most lncRNAs in the progression of gastric cancer (GC) remain largely unexplored. This study investigates the biological function and underlying mechanism of a novel lncRNA, XLOC_004787 in GC. METHODS: The location of XLOC_004787 in GES-1 cells and HGC-27 cells were detected by fluorescence in situ hybridization (FISH) assay. The expression levels of XLOC_004787 were assessed using quantitative real-time fluorescence PCR (qRT-PCR) in various cell lines, including GES-1, MGC-803, MKN-45, BGC-823, SGC-7901, and HGC-27 cells. Functional assays such as Transwell migration, cell counting kit-8 (CCK-8), and colony formation experiments were employed to analyze the effects of XLOC_004787 and miR-203a-3p on cell migration and proliferation. Protein levels associated with GC in these cell lines were examined by Western blotting. The intracellular localization of ß-catenin and P-Smad2/3 was assessed using immunofluorescence (IF) assay. Additionally, the interaction between XLOC_004787 and miR-203a-3p was investigated using a dual luciferase assay. RESULTS: XLOC_004787 was localized at both the cytoplasm and nucleus of GES-1 cells and HGC-27 cells. Compared to normal tissues and GES-1 cells, XLOC_004787 expression was significantly upregulated in GC tissues and cells, with the highest and lowest expression observed in SGC-7901 and HGC-27 cells, respectively. Furthermore, a reduced expression of XLOC_004787 was seen to inhibit migration and proliferation in SGC-7901 cells. Western blotting analysis revealed that a decrease in XLOC_004787 expression correspondingly decreased the expression of N-cadherin, mmp2, mmp9, Snail, Vimentin, ß-catenin, C-myc, Cyclin D1, and TGF-ß, while concurrently increasing E-cadherin expression. This was also associated with diminished expression of P-Smad2/3 in relation to Smad2/3, and reduced P-Gsk3ß expression in comparison to Gsk3ß. Additionally, the nuclear entry of P-Smad2/3 and ß-catenin was reduced by lower XLOC_004787 expression. Amplifying XLOC_004787 expression via pcDNA_XLOC_004787 suggested a potential for cancer promotion. Notably, XLOC_004787 was found to negatively regulate mir-203a-3p expression, with potential binding sites identified between the two. Higher mir-203a-3p expression was observed to decrease migration and proliferation, and enhance E-cadherin expression. Conversely, suppression of mir-203a-3p expression suggested a potential promotion of proliferation and migration in GC cells. CONCLUSIONS: These results suggest that XLOC_004787, found to be upregulated in GC tissues, potentially promotes proliferation and migration in GC cells. This occurs through the activation of TGF-ß and Wnt/ß-catenin signaling pathways and the expression of EMT-related proteins. Additionally, XLOC_004787 may influence cell migration and proliferation by modulating the signaling pathway via the adsorption and inhibition of mir-203a-3p.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , In Situ Hybridization, Fluorescence , Cell Line, Tumor , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Cadherins/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
7.
Exp Neurol ; 368: 114475, 2023 10.
Article in English | MEDLINE | ID: mdl-37451583

ABSTRACT

Mass effect after intracerebral hemorrhage (ICH) not only mechanically induces the brain damage, but also influences the progress of secondary brain damage. However, the influence of mass effect on the iron overload after ICH is still unclear. Here, a fixed volume of ferrous chloride solution and different volumes of poly(N-isopropylacrylamide) (PNIPAM) hydrogel were co-injected into the right basal ganglia of rats to establish the ICH model with certain degree of iron deposition but different degrees of mass effect. We found that mass effect significantly increased the iron deposition on neuronal cells at 6 h after ICH in a volume-dependent manner. Furthermore, the upregulation of Piezo-2, divalent metal transporter 1 (DMT1), transferrin receptor (TfR), and ferroptosis expressions were noted as the increase of mass effect. In addition, the pERK1/2 inhibitor PD98059 treated ICH rats reversed the upregulation of iron uptake protein and ferroptosis. Our findings revealed the relationship between mass effect and the iron uptake and ferroptosis, which are benefit to understand the brain damage process after ICH.


Subject(s)
Brain Injuries , Iron Overload , Rats , Animals , Brain/metabolism , Rats, Sprague-Dawley , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Iron/metabolism , Iron Overload/complications , Iron Overload/metabolism , Brain Injuries/metabolism
9.
Mol Oncol ; 17(5): 825-838, 2023 05.
Article in English | MEDLINE | ID: mdl-36732646

ABSTRACT

Circulating tumor DNA (ctDNA) has potential as a promising biomarker for molecular residual disease (MRD) detection in lung cancer. As the next-generation sequencing standardized panel for ctDNA detection emerges, its clinical utility needs to be validated. We prospectively recruited 184 resectable lung cancer patients from four medical centers. Serial postoperative ctDNAs were analyzed by a standardized panel. A total of 427 postoperative plasma samples from 177 eligible patients were enrolled. ctDNA positivity after surgery was an independent predictor for disease recurrence and preceded radiological recurrence by a median of 6.6 months (range, 0.7-27.0 months). ctDNA-positive or -negative patients with tumors of any stage had similar disease-free survival (DFS). Patients who received targeted therapy had significantly improved DFS than those not receiving adjuvant therapy or receiving chemotherapy, regardless of baseline/preadjuvant ctDNA status. According to whether the ctDNA variants were detected in its matched tissue, they were classified into tissue derived and non-tissue derived. Patients with detectable postoperative ctDNA with tissue-derived mutations had comparable DFS with those with non-tissue-derived mutations. Collectively, we demonstrated that postoperative ctDNA has the potential to stratify prognosis and optimize tumor stage in resectable lung cancer. ctDNA variants not identified in tissue samples should be considered in MRD test.


Subject(s)
Circulating Tumor DNA , Lung Neoplasms , Humans , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Disease-Free Survival , Neoplasm Recurrence, Local/genetics , Risk Assessment
10.
Essays Biochem ; 67(3): 471-478, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36562143

ABSTRACT

Mycorrhizal fungi form mutually beneficial interactions with a wide range of terrestrial plants. During this symbiosis, the associated fungus provides mineral nutrients, such as phosphorus and nitrogen, to its host plant in exchange of photosynthesis-derived carbohydrates. Genome sequencing of mycorrhizal fungi has shown that arbuscular mycorrhizal fungi and ectomycorrhizal fungi have a restricted set of plant-cell wall degrading enzymes (PCWDE) genes, while orchid and ericoid mycorrhizal fungi have an extended PCWDE repertoire similar to soil decomposers and wood-decay fungi. On the other hand, mycorrhizal fungi have retained a substantial set of carbohydrate active enzymes (CAZymes) acting on microbial polysaccharides. Functional analysis has shown that several of the remaining PCWDEs are involved in the fungal root colonization and establishment of the symbiotic interface. In this review, we highlight the current knowledge on the evolution and function of PCWDEs in mycorrhizal fungi.


Subject(s)
Mycorrhizae , Mycorrhizae/genetics , Symbiosis/genetics , Plants/genetics , Base Sequence , Carbohydrates
11.
BMC Oral Health ; 22(1): 614, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36527111

ABSTRACT

BACKGROUND: Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS: Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS: Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION: Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.


Subject(s)
Periodontitis , Humans , Periodontitis/metabolism , Gingiva/metabolism , Neutrophils/metabolism , Inflammation/pathology , Proteins
12.
Br J Cancer ; 127(12): 2154-2165, 2022 12.
Article in English | MEDLINE | ID: mdl-36253524

ABSTRACT

BACKGROUND: Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS: This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS: BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS: BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Prospective Studies , Genomics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics
14.
Front Microbiol ; 13: 910255, 2022.
Article in English | MEDLINE | ID: mdl-35801117

ABSTRACT

As the widest cultivated edible mushroom worldwide, Lentinula edodes suffers serious yield and quality losses from heat stress during growth and development, and in our previous study, exogenous 2,4-Dichlorophenoxyacetic acid (2,4-D) was found to improve the thermotolerance of L. edodes strain YS3357, but the molecular mechanism remains unclear. Here, we explored the potential protective mechanism of exogenous 2,4-D against heat stress by transcriptome analysis. 2,4-D possible improve the thermotolerance of L. edodes through regulating antioxidant genes, transcription factors, energy-provision system, membrane fluidity, and cell wall remodeling. Furthermore, 2,4-D was also found to regulate the saturation levels of fatty acids and ATP content in L. edodes mycelium under heat stress. This study proposed a regulatory network of 2,4-D in regulating L. edodes response to heat stress, providing a theoretical basis for improving L. edodes thermotolerance, and facilitating the understanding of the molecular mechanism of exogenous hormones in alleviating abiotic stress damage to macrofungi.

15.
Cancer Discov ; 12(7): 1690-1701, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35543554

ABSTRACT

The efficacy and potential limitations of molecular residual disease (MRD) detection urgently need to be fully elucidated in a larger population of non-small cell lung cancer (NSCLC). We enrolled 261 patients with stages I to III NSCLC who underwent definitive surgery, and 913 peripheral blood samples were successfully detected by MRD assay. Within the population, only six patients (3.2%) with longitudinal undetectable MRD recurred, resulting in a negative predictive value of 96.8%. Longitudinal undetectable MRD may define the patients who were cured. The peak risk of developing detectable MRD was approximately 18 months after landmark detection. Correspondingly, the positive predictive value of longitudinal detectable MRD was 89.1%, with a median lead time of 3.4 months. However, brain-only recurrence was less commonly detected by MRD (n = 1/5, 20%). Further subgroup analyses revealed that patients with undetectable MRD might not benefit from adjuvant therapy. Together, these results expound the value of MRD in NSCLC. SIGNIFICANCE: This study confirms the prognostic value of MRD detection in patients with NSCLC after definitive surgery, especially in those with longitudinal undetectable MRD, which might represent the potentially cured population regardless of stage and adjuvant therapy. Moreover, the risk of developing detectable MRD decreased stepwise after 18 months since landmark detection. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Neoplasm, Residual/diagnosis , Prognosis
16.
Oncogene ; 41(22): 3093-3103, 2022 05.
Article in English | MEDLINE | ID: mdl-35468938

ABSTRACT

Epithelial ovarian cancer (EOC) is classified into five major histotypes: high-grade serous (HGSOC), low-grade serous (LGSOC), clear cell (CCOC), endometrioid (ENOC), and mucinous (MOC). However, the landscape of molecular and immunological alterations in these histotypes, especially LGSOC, CCOC, ENOC, and MOC, is largely uncharacterized. We collected 101 treatment-naive EOC patients. The resected tumor tissues and paired preoperative peripheral blood samples were collected and subjected to target sequencing of 1021 cancer-associated genes and T cell repertoire sequencing. Distinct characteristics of mutations were identified among the five histotypes. Furthermore, tumor mutation burden (TMB) was found to be higher in CCOC and ENOC, but lower in LGSOC and HGSOC. Alterations associated with DNA damage repair (DDR) pathways and homologous recombination deficiencies (HRD) were prevalent in five histotypes. CCOC demonstrated increased level of T cell clonality compared with HSGOC. Interestingly, the proportion of the 100 most common T cell clones was associated with TMB and tumor neoantigen burden in CCOC, highlighting more sensitive anti-tumor responses in this histotype, which was also evidenced by the enhanced convergent recombination of T cell clones. These findings shed light on the molecular traits of genomic alteration and T cell repertoire in the five major EOC histotypes and may help optimize clinical management of EOC with different histotypes.


Subject(s)
Ovarian Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Female , Genomics , Humans , Ovarian Neoplasms/pathology , Phenotype , Receptors, Antigen, T-Cell/genetics
17.
J Periodontal Res ; 57(3): 594-614, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35388494

ABSTRACT

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue-dependent and disease-dependent. This study aimed to identify novel periodontitis-associated circRNAs and predict relevant circRNA-periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. MATERIAL AND METHODS: High-throughput sequencing and RT-qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA-disease association prediction, and circRNA-miRNA-mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver-operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. RESULTS: High-throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT-qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40-.69, p < .05, moderate). A circRNA-miRNA-mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321-0.8667, p < .05). CONCLUSION: CircRNA-disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560-23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.


Subject(s)
MicroRNAs , Periodontitis , Computational Biology/methods , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Humans , MicroRNAs/genetics , Periodontitis/genetics , RNA, Circular/genetics , RNA, Messenger/genetics
18.
J Genet Genomics ; 49(2): 145-154, 2022 02.
Article in English | MEDLINE | ID: mdl-34433101

ABSTRACT

Primary biliary cholangitis (PBC) is an autoimmune disease involving dysregulation of a broad array of homeostatic and metabolic processes. Although considerable single-nucleotide polymorphisms have been unveiled, a large fraction of risk factors remains enigmatic. Candidate genes with rare mutations that tend to confer more deleterious effects need to be identified. To help pinpoint cellular and developmental mechanisms beyond common noncoding variants, we integrate whole exome sequencing with integrative network analysis to investigate genes harboring de novo mutations. Prominent convergence has been revealed on a network of disease-specific co-expression comprised of 55 genes associated with homeostasis and metabolism. The transcription factor gene MEF2D and the DNA repair gene PARP2 are highlighted as hub genes and identified to be up- and down-regulated, respectively, in peripheral blood data set. Enrichment analysis demonstrates that altered expression of MEF2D and PARP2 may trigger a series of molecular and cellular processes with pivotal roles in PBC pathophysiology. Our study identifies genes with de novo mutations in PBC and suggests that a subset of genes in homeostasis and metabolism tend to act in synergy through converging on co-expression network, providing novel insights into the etiology of PBC and expanding the pool of molecular candidates for discovering clinically actionable biomarkers.


Subject(s)
Liver Cirrhosis, Biliary , Homeostasis/genetics , Humans , Liver Cirrhosis, Biliary/genetics , Mutation , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
19.
J Neurochem ; 160(1): 88-99, 2022 01.
Article in English | MEDLINE | ID: mdl-33797772

ABSTRACT

The mechanisms of brain injury after intracerebral hemorrhage (ICH) involve mass effect-induced primary injury and secondary injury caused by a pathologic response to the hematoma. Considerable attentions have recently been paid to the mechanisms and therapeutic strategy for secondary brain injury due to no overall benefit from early surgery compared with initial conservative treatment. However, it is unclear whether there is a causal relationship between mass effect and secondary brain injury. Here, the role of mass effect on early erythrolysis after experimental ICH was investigated based on the poly(N-isopropylacrylamide) (PNIPAM) ICH model. Autologous blood and PNIPAM hydrogel were co-injected into the right basal ganglia of rats to induce different degrees of mass effect, but with a constant hematoma. The influences of different mass effect and time courses on erythrolysis and brain damages after ICH were investigated. Furthermore, the protective effect of trehalose against erythrolysis after ICH was evaluated. The results showed that mass effect caused erythrocyte morphological change at 24 hr after ICH. The released hemoglobin was quantitatively evaluated by a polynomial concerning with the mass effect, the volume of hematoma, and the time of ICH. An obvious increase in heme oxygenase-1 (HO-1) and ionized calcium binding adaptor molecule-1 (Iba-1) expression, iron deposition, cell death, and neurological deficits was observed with increasing mass effect. Moreover, trehalose alleviated brain injury by inhibiting erythrolysis after ICH. These data demonstrated that mass effect accelerated the erythrolysis and brain damages after ICH, which could be relieved through trehalose therapy.


Subject(s)
Cerebral Hemorrhage/pathology , Erythrocytes/drug effects , Erythrocytes/pathology , Trehalose/pharmacology , Animals , Cerebral Hemorrhage/complications , Disease Models, Animal , Hematoma/etiology , Hematoma/pathology , Male , Rats , Rats, Sprague-Dawley
20.
Clin Cancer Res ; 28(3): 526-539, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34921019

ABSTRACT

PURPOSE: Here, we have investigated treatment resistance mechanisms in small cell lung cancer (SCLC) by focusing on comparing the genotype and phenotype in tumor samples of treatment-resistant and treatment-sensitive SCLC. EXPERIMENTAL DESIGN: We conducted whole-exome sequencing on paired tumor samples at diagnosis and relapse from 11 patients with limited-stage (LS)-SCLC and targeted sequencing of 1,021 cancer-related genes on cell-free DNA at baseline and paired relapsed samples from 9 additional patients with LS-SCLC. Furthermore, we performed label-free mass spectrometry-based proteomics on tumor samples from 28 chemo-resistant and 23 chemo-sensitive patients with extensive-stage (ES)-SCLC. The main findings were validated in vitro in chemo-sensitive versus chemo-resistant SCLC cell lines and analyses of transcriptomic data of SCLC cell lines from a public database. RESULTS: Genomic analyses demonstrated that at relapse of LS-SCLC, genes in the PI3K/AKT signaling pathway were enriched for acquired somatic mutations or high-frequency acquired copy-number variants. Pathway analysis on differentially upregulated proteins from ES-SCLC cohort revealed enrichment in the HIF-1 signaling pathway. Importantly, 7 of 62 PI3K/AKT pathway genes containing acquired somatic copy-number amplifications were enriched in HIF-1 pathway. Analyses of transcriptomic data of SCLC cell lines from public databases confirmed upregulation of PI3K/AKT and HIF-1 pathways in chemo-resistant SCLC cell lines. Furthermore, chemotherapy-resistant cell lines could be sensitive to PI3K inhibitors in vitro. CONCLUSIONS: PI3K/AKT pathway activation may be one potential mechanism underlying therapeutic resistance of SCLC. This finding warrants further investigation and provides a possible approach to reverse resistance to chemo/radiotherapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/therapy , Small Cell Lung Carcinoma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...