Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37653879

ABSTRACT

Chili anthracnose is one of the most common and destructive fungal pathogens that affects the yield and quality of pepper. Although WRKY proteins play crucial roles in pepper resistance to a variety of pathogens, the mechanism of their resistance to anthracnose is still unknown. In this study, we found that CaWRKY50 expression was obviously induced by Colletotrichum scovillei infection and salicylic acid (SA) treatments. CaWRKY50-silencing enhanced pepper resistance to C. scovillei, while transient overexpression of CaWRKY50 in pepper increased susceptibility to C. scovillei. We further found that overexpression of CaWRKY50 in tomatoes significantly decreased resistance to C. scovillei by SA and reactive oxygen species (ROS) signaling pathways. Moreover, CaWRKY50 suppressed the expression of two SA-related genes, CaEDS1 (enhanced disease susceptibility 1) and CaSAMT1 (salicylate carboxymethyltransferase 1), by directly binding to the W-box motif in their promoters. Additionally, we demonstrated that CaWRKY50 interacts with CaWRKY42 and CaMIEL1 in the nucleus. Thus, our findings revealed that CaWRKY50 plays a negative role in pepper resistance to C. scovillei through the SA-mediated signaling pathway and the antioxidant defense system. These results provide a theoretical foundation for molecular breeding of pepper varieties resistant to anthracnose.

2.
J Exp Bot ; 73(5): 1655-1667, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35137060

ABSTRACT

Cold stress is one of the main factors limiting growth and development in pepper. Calcineurin B-like proteins (CBLs) are specific calcium sensors with non-canonical EF-hands to capture calcium signals, and interact with CBL-interacting protein kinases (CIPKs) in the regulation of various stresses. In this study, we isolated a cold-induced CIPK gene from pepper named CaCIPK13, which encodes a protein of 487 amino acids. In silico analyses indicated that CaCIPK13 is a typical CIPK family member with a conserved NAF motif, which consists of the amino acids asparagine, alanine, and phenylalanine. The CaCIPK13 protein was located in the nucleus and plasma membrane. Knock down of CaCIPK13 resulted in enhanced sensitivity to cold stress in pepper, with increased malondialdehyde content, H2O2 accumulation, and electrolyte leakage, while the catalase, peroxidase, superoxide dismutase activities and anthocyanin content were decreased. The transcript level of cold and anthocyanin-related genes was substantially decreased in CaCIPK13-silenced pepper leaves relative to the empty vector control. On the contrary, overexpression of CaCIPK13 in tomato improved cold tolerance via increasing anthocyanin content and activities of reactive oxygen species scavenging enzymes. Furthermore, the interaction of CaCIPK13 with CaCBL1/6/7/8 was Ca2+-dependent. These results indicate that CaCIPK13 plays a positive role in cold tolerance mechanism via CBL-CIPK signalling.


Subject(s)
Capsicum/enzymology , Cold-Shock Response , Plant Proteins , Protein Kinases , Calcium-Binding Proteins/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction , Stress, Physiological
3.
Hortic Res ; 8(1): 216, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34593788

ABSTRACT

Drought stress is a major agricultural problem restricting the growth, development, and productivity of plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) significantly influence the plant response to different stresses. However, the molecular mechanisms of CBL-CIPK in the drought stress response of pepper are still unknown. Here, the function of CaCIPK3 in the regulation of drought stress in pepper (Capsicum annuum L.) was explored. Transcriptomic data and quantitative real-time PCR (qRT-PCR) analysis revealed that CaCIPK3 participates in the response to multiple stresses. Knockdown of CaCIPK3 in pepper increased the sensitivity to mannitol and methyl jasmonate (MeJA). Transient overexpression of CaCIPK3 improved drought tolerance by enhancing the activities of the antioxidant system and positively regulating jasmonate (JA)-related genes. Ectopic expression of CaCIPK3 in tomato also improved drought and MeJA resistance. As the CaCIPK3-interacting partner, CaCBL2 positively influenced drought resistance. Additionally, CaWRKY1 and CaWRKY41 directly bound the CaCIPK3 promoter to influence its expression. This study shows that CaCIPK3 acts as a positive regulator in drought stress resistance via the CBL-CIPK network to regulate MeJA signaling and the antioxidant defense system.

4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203346

ABSTRACT

Harsh environmental factors have continuous negative effects on plant growth and development, leading to metabolic disruption and reduced plant productivity and quality. However, filamentation temperature-sensitive H protease (FtsH) plays a prominent role in helping plants to cope with these negative impacts. In the current study, we examined the transcriptional regulation of the CaFtsH06 gene in the R9 thermo-tolerant pepper (Capsicum annuum L.) line. The results of qRT-PCR revealed that CaFtsH06 expression was rapidly induced by abiotic stress treatments, including heat, salt, and drought. The CaFtsH06 protein was localized to the mitochondria and cell membrane. Additionally, silencing CaFtsH06 increased the accumulation of malonaldehyde content, conductivity, hydrogen peroxide (H2O2) content, and the activity levels of superoxide dismutase and superoxide (·O2-), while total chlorophyll content decreased under these abiotic stresses. Furthermore, CaFtsH06 ectopic expression enhanced tolerance to heat, salt, and drought stresses, thus decreasing malondialdehyde, proline, H2O2, and ·O2- contents while superoxide dismutase activity and total chlorophyll content were increased in transgenic Arabidopsis. Similarly, the expression levels of other defense-related genes were much higher in the transgenic ectopic expression lines than WT plants. These results suggest that CaFtsH06 confers abiotic stress tolerance in peppers by interfering with the physiological indices through reducing the accumulation of reactive oxygen species, inducing the activities of stress-related enzymes and regulating the transcription of defense-related genes, among other mechanisms. The results of this study suggest that CaFtsH06 plays a very crucial role in the defense mechanisms of pepper plants to unfavorable environmental conditions and its regulatory network with other CaFtsH genes should be examined across variable environments.


Subject(s)
Capsicum/metabolism , Plants, Genetically Modified/metabolism , Capsicum/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Stress, Physiological/physiology
5.
Antioxidants (Basel) ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374725

ABSTRACT

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant-pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.

6.
Int J Mol Sci ; 21(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260627

ABSTRACT

Squamosa promoter binding protein (SBP)-box genes are plant-specific transcription factors involved in plant growth and development, morphogenesis and biotic and abiotic stress responses. However, these genes have been understudied in pepper, especially with respect to defense responses to Phytophthora capsici infection. CaSBP11 is a SBP-box family gene in pepper that was identified in our previous research. Silencing CaSBP11 enhanced the defense response of pepper plants to Phytophthora capsici. Without treatment, the expression of defense-related genes (CaBPR1, CaPO1, CaSAR8.2 and CaDEF1) increased in CaSBP11-silenced plants. However, the expression levels of these genes were inhibited under transient CaSBP11 expression. CaSBP11 overexpression in transgenic Nicotiana benthamiana decreased defense responses, while in Arabidopsis, it induced or inhibited the expression of genes in the salicylic acid and jasmonic acid signaling pathways. CaSBP11 overexpression in sid2-2 mutants induced AtNPR1, AtNPR3, AtNPR4, AtPAD4, AtEDS1, AtEDS5, AtMPK4 and AtNDR1 expression, while AtSARD1 and AtTGA6 expression was inhibited. CaSBP11 overexpression in coi1-21 and coi1-22 mutants, respectively, inhibited AtPDF1.2 expression and induced AtPR1 expression. These results indicate CaSBP11 has a negative regulatory effect on defense responses to Phytophthora capsici. Moreover, it may participate in the defense response of pepper to Phytophthora capsici by regulating defense-related genes and the salicylic and jasmonic acid-mediated disease resistance signaling pathways.


Subject(s)
Capsicum/immunology , Gene Expression Regulation, Plant , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Arabidopsis/genetics , Capsicum/genetics , Cell Nucleus/metabolism , Cyclopentanes/metabolism , Disease Resistance/genetics , Gene Silencing , Models, Biological , Mutation/genetics , Oxylipins/metabolism , Phenotype , Plant Diseases/microbiology , Plants, Genetically Modified , Protein Transport , Signal Transduction , Nicotiana/genetics , Nicotiana/microbiology
7.
Int J Mol Sci ; 21(21)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171626

ABSTRACT

Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.


Subject(s)
Capsicum/genetics , Capsicum/physiology , Genes, Plant , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/physiology , Plant Proteins/genetics , Plant Proteins/physiology , Thermotolerance/genetics , Thermotolerance/physiology , Antioxidants/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Gene Silencing , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hydrogen Peroxide/metabolism , Models, Biological , Phylogeny , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Nicotiana/genetics , Nicotiana/metabolism , Transcriptional Activation
8.
Int J Mol Sci ; 21(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927746

ABSTRACT

Anthracnose caused by Colletotrichum acutatum is one of the most devastating fungal diseases of pepper (Capsicum annuum L.). The utilization of chitin-binding proteins or chitinase genes is the best option to control this disease. A chitin-binding domain (CBD) has been shown to be crucial for the innate immunity of plants and activates the hypersensitive response (HR). The CaChiIII7 chitinase gene has been identified and isolated from pepper plants. CaChiIII7 has repeated CBDs that encode a chitinase enzyme that is transcriptionally stimulated by C. acutatum infection. The knockdown of CaChiIII7 in pepper plants confers increased hypersensitivity to C. acutatum, resulting in its proliferation in infected leaves and an attenuation of the defense response genes CaPR1, CaPR5, and SAR8.2 in the CaChiIII7-silenced pepper plants. Additionally, H2O2 accumulation, conductivity, proline biosynthesis, and root activity were distinctly reduced in CaChiIII7-silenced plants. Subcellular localization analyses indicated that the CaChiIII7 protein is located in the plasma membrane and cytoplasm of plant cells. The transient expression of CaChiIII7 increases the basal resistance to C. acutatum by significantly expressing several defense response genes and the HR in pepper leaves, accompanied by an induction of H2O2 biosynthesis. These findings demonstrate that CaChiIII7 plays a prominent role in plant defense in response to pathogen infection.


Subject(s)
Capsicum/genetics , Chitinases/genetics , Colletotrichum/physiology , Host-Pathogen Interactions , Capsicum/enzymology , Capsicum/microbiology , Chitinases/chemistry , Chitinases/metabolism , Disease Resistance
9.
Int J Mol Sci ; 21(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784662

ABSTRACT

Plants need to cope with multitudes of stimuli throughout their lifecycles in their complex environments. Calcium acts as a ubiquitous secondary messenger in response to numerous stresses and developmental processes in plants. The major Ca2+ sensors, calcineurin B-like proteins (CBLs), interact with CBL-interacting protein kinases (CIPKs) to form a CBL-CIPK signaling network, which functions as a key component in the regulation of multiple stimuli or signals in plants. In this review, we describe the conserved structure of CBLs and CIPKs, characterize the features of classification and localization, draw conclusions about the currently known mechanisms, with a focus on novel findings in response to multiple stresses, and summarize the physiological functions of the CBL-CIPK network. Moreover, based on the gradually clarified mechanisms of the CBL-CIPK complex, we discuss the present limitations and potential prospects for future research. These aspects may provide a deeper understanding and functional characterization of the CBL-CIPK pathway and other signaling pathways under different stresses, which could promote crop yield improvement via biotechnological intervention.


Subject(s)
Plants/metabolism , Signal Transduction , Stress, Physiological , Amino Acid Sequence , Models, Biological , Phylogeny , Plant Proteins/metabolism , Plants/chemistry
10.
Front Plant Sci ; 11: 139, 2020.
Article in English | MEDLINE | ID: mdl-32174937

ABSTRACT

The basic leucine zipper (bZIP) proteins compose a family of transcription factors (TFs), which play a crucial role in plant growth, development, and abiotic and biotic stress responses. However, no comprehensive analysis of bZIP family has been reported in pepper (Capsicum annuum L.). In this study, we identified and characterized 60 bZIP TF-encoding genes from two pepper genomes. These genes were divided into 10 groups based on their phylogenetic relationships with bZIP genes from Arabidopsis. Six introns/exons structural patterns within the basic and hinge regions and the conserved motifs were identified among all the pepper bZIP proteins, on the basis of which, we classify them into different subfamilies. Based on the transcriptomic data of Zunla-1 genome, expression analyses of 59 pepper bZIP genes (not including CabZIP25 of CM334 genome), indicated that the pepper bZIP genes were differentially expressed in the pepper tissues and developmental stages, and many of the pepper bZIP genes might be involved in responses to various abiotic stresses and phytohormones. Further, gene expression analysis, using quantitative real-time PCR (qRT-PCR), showed that the CabZIP25 gene was expressed at relatively higher levels in vegetative tissues, and was strongly induced by abiotic stresses and phytohormones. In comparing with wild type Arabidopsis, germination rate, fresh weight, chlorophyll content, and root lengths increased in the CabZIP25-overexpressing Arabidopsis under salt stress. Additionally, CabZIP25-silenced pepper showed lower chlorophyll content than the control plants under salt stress. These results suggested that CabZIP25 improved salt tolerance in plants. Taken together, our results provide new opportunities for the functional characterization of bZIP TFs in pepper.

11.
Front Plant Sci ; 11: 183, 2020.
Article in English | MEDLINE | ID: mdl-32174944

ABSTRACT

Little information is available on the role of Squamosa promoter binding protein (SBP)-box genes in pepper plants. This family of genes is known to have transcription characteristics specific to plants and to regulate plant growth, development, stress responses, and signal transduction. To investigate their specific effects in pepper (Capsicum annuum), we screened pepper SBP-box family genes (CaSBP genes) for Phytophthora capsici (P. capsici) resistance genes using virus-induced gene silencing. CaSBP08, CaSBP11, CaSBP12, and CaSBP13, which are associated with plant defense responses against P. capsici, were obtained from among fifteen identified CaSBP genes. The function of CaSBP08 was identified in pepper defense response against P. capsici infection in particular. CaSBP08 protein was localized to the nucleus. Silencing of CaSBP08 enhanced resistance to P. capsici infection. Following P. capsici inoculation, the malondialdehyde content, peroxidase activity, and disease index percentage of the CaSBP08-silenced plants decreased compared to the control. Additionally, the expression levels of other defense-related genes, especially those of CaBPR1 and CaSAR8.2, were more strongly induced in CaSBP08-silenced plants than in the control. However, CaSBP08 overexpression in Nicotiana benthamiana enhanced susceptibility to P. capsici infection. This work provides a foundation for the further research on the role of CaSBP genes in plant defense responses against P. capsici infection.

12.
Front Plant Sci ; 11: 219, 2020.
Article in English | MEDLINE | ID: mdl-32174952

ABSTRACT

Extreme environmental conditions seriously affect crop growth and development, resulting in substantial reduction in yield and quality. However, chitin-binding proteins (CBP) family member CaChiVI2 plays a crucial role in eliminating the impact of adverse environmental conditions, such as cold and salt stress. Here, for the first time it was discovered that CaChiVI2 (Capana08g001237) gene of pepper (Capsicum annuum L.) had a role in resistance to heat stress and physiological processes. The full-length open-reading frame (ORF) of CaChiVI2 (606-bp, encoding 201-amino acids), was cloned into TRV2:CaChiVI2 vector for silencing. The CaChiVI2 gene carries heat shock elements (HSE, AAAAAATTTC) in the upstream region, and thereby shows sensitivity to heat stress at the transcriptional level. The silencing effect of CaChiVI2 in pepper resulted in increased susceptibility to heat and Phytophthora capsici infection. This was evident from the severe symptoms on leaves, the increase in superoxide (O2 -) and hydrogen peroxide (H2O2) accumulation, higher malondialdehyde (MDA), relative electrolyte leakage (REL) and lower proline contents compared with control plants. Furthermore, the transcript level of other resistance responsive genes was also altered. In addition, the CaChiIV2-overexpression in Arabidopsis thaliana showed mild heat and drought stress symptoms and increased transcript level of a defense-related gene (AtHSA32), indicating its role in the co-regulation network of the plant. The CaChiVI2-overexpressed plants also showed a decrease in MDA contents and an increase in antioxidant enzyme activity and proline accumulation. In conclusion, the results suggest that CaChiVI2 gene plays a decisive role in heat and drought stress tolerance, as well as, provides resistance against P. capsici by reducing the accumulation of reactive oxygen species (ROS) and modulating the expression of defense-related genes. The outcomes obtained here suggest that further studies should be conducted on plants adaptation mechanisms in variable environments.

13.
Int J Mol Sci ; 21(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936712

ABSTRACT

SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction, and stress response. However, little is known about the role of pepper SBP-box transcription factor genes in response to abiotic stress. Here, one of the pepper SBP-box gene, CaSBP12, was selected and isolated from pepper genome database in our previous study. The CaSBP12 gene was induced under salt stress. Silencing the CaSBP12 gene enhanced pepper plant tolerance to salt stress. The accumulation of reactive oxygen species (ROS) of the detached leaves of CaSBP12-silenced plants was significantly lower than that of control plants. Besides, the Na+, malondialdehyde content, and conductivity were significantly increased in control plants than that in the CaSBP12-silenced plants. In addition, the CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to salt stress with higher damage severity index percentage and accumulation of ROS as compared to the wild-type. These results indicated that CaSBP12 negatively regulates salt stress tolerance in pepper may relate to ROS signaling cascades.


Subject(s)
Capsicum/metabolism , Salt Stress/physiology , Salt Tolerance/physiology , Selenium-Binding Proteins/metabolism , Transcription Factors/metabolism , Capsicum/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Selenium-Binding Proteins/genetics , Stress, Physiological/physiology , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/genetics
14.
Food Nutr Res ; 642020.
Article in English | MEDLINE | ID: mdl-33447178

ABSTRACT

BACKGROUND: Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS: To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS: Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION: Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.

15.
Int J Mol Sci ; 20(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731530

ABSTRACT

Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.


Subject(s)
Heat-Shock Proteins/metabolism , Plant Diseases/genetics , Plant Immunity/genetics , Plant Proteins/metabolism , Plants/metabolism , Stress, Physiological , Heat-Shock Proteins/genetics , Plant Proteins/genetics , Plants/genetics , Protein Stability , Reactive Oxygen Species/metabolism
16.
Planta ; 250(6): 2127-2145, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606756

ABSTRACT

MAIN CONCLUSION: HSP60 gene family in pepper was analyzed through bioinformatics along with transcriptional regulation against multiple abiotic and hormonal stresses. Furthermore, the knockdown of CaHSP60-6 increased sensitivity to heat stress. The 60 kDa heat shock protein (HSP60) also known as chaperonin (cpn60) is encoded by multi-gene family that plays an important role in plant growth, development and in stress response as a molecular chaperone. However, little is known about the HSP60 gene family in pepper (Capsicum annuum L.). In this study, 16 putative pepper HSP60 genes were identified through bioinformatic tools. The phylogenetic tree revealed that eight of the pepper HSP60 genes (50%) clustered into group I, three (19%) into group II, and five (31%) into group III. Twelve (75%) CaHSP60 genes have more than 10 introns, while only a single gene contained no introns. Chromosomal mapping revealed that the tandem and segmental duplication events occurred in the process of evolution. Gene ontology enrichment analysis predicted that CaHSP60 genes were responsible for protein folding and refolding in an ATP-dependent manner in response to various stresses in the biological processes category. Multiple stress-related cis-regulatory elements were found in the promoter region of these CaHSP60 genes, which indicated that these genes were regulated in response to multiple stresses. Tissue-specific expression was studied under normal conditions and induced under 2 h of heat stress measured by RNA-Seq data and qRT-PCR in different tissues (roots, stems, leaves, and flowers). The data implied that HSP60 genes play a crucial role in pepper growth, development, and stress responses. Fifteen (93%) CaHSP60 genes were induced in both, thermo-sensitive B6 and thermo-tolerant R9 lines under heat treatment. The relative expression of nine representative CaHSP60 genes in response to other abiotic stresses (cold, NaCl, and mannitol) and hormonal applications [ABA, methyl jasmonate (MeJA), and salicylic acid (SA)] was also evaluated. Knockdown of CaHSP60-6 increased the sensitivity to heat shock treatment as documented by a higher relative electrolyte leakage, lipid peroxidation, and reactive oxygen species accumulation in silenced pepper plants along with a substantial lower chlorophyll content and antioxidant enzyme activity. These results suggested that HSP60 might act as a positive regulator in pepper defense against heat and other abiotic stresses. Our results provide a basis for further functional analysis of HSP60 genes in pepper.


Subject(s)
Capsicum/growth & development , Capsicum/genetics , Gene Expression Regulation, Plant/drug effects , Heat-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Chlorophyll/metabolism , Plant Leaves/metabolism
17.
BMC Genomics ; 20(1): 775, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31653202

ABSTRACT

BACKGROUND: Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. RESULTS: In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. CONCLUSIONS: Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant's defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.


Subject(s)
Capsicum/genetics , Capsicum/microbiology , Phytophthora/physiology , Plant Proteins/genetics , Capsicum/drug effects , Capsicum/physiology , Chromosomes, Plant/genetics , Gene Duplication , Intracellular Space/metabolism , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Protein Transport/genetics , Sequence Analysis , Stress, Physiological/genetics
18.
Genes (Basel) ; 10(7)2019 07 17.
Article in English | MEDLINE | ID: mdl-31319566

ABSTRACT

Phytophthora blight is one of the most destructive diseases of pepper (Capsicum annuum L.) globally. The APETALA2/Ethylene Responsive Factors (AP2/ERF) genes play a crucial role in plant response to biotic stresses but, to date, have not been studied in the context of Phytophthora resistance in pepper. Here, we documented potential roles for the pepper CaAP2/ERF064 gene in inducing cell death and conferring resistance to Phytophthora capsici (P. capsici) infection. Results revealed that the N-terminal, AP2 domain, and C-terminal of CaAP2/ERF064 protein is responsible for triggering cell death in Nicotiana benthamiana (N. benthamiana). Moreover, the transcription of CaAP2/ERF064 in plant is synergistically regulated by the Methyl-Jasmonate (MeJA) and ethephon (ET) signaling pathway. CaAP2/ERF064 was found to regulate the expression of CaBPR1, which is a pathogenesis-related (PR) gene of pepper. Furthermore, the silencing of CaAP2/ERF064 compromised the pepper plant resistance to P.capsici by reducing the transcript level of defense-related genes CaBPR1, CaPO2, and CaSAR82, while the ectopic expression of CaAP2/ERF064 in N. benthamiana plant elevated the expression level of NbPR1b and enhanced resistance to P.capsici. These results suggest that CaAP2/ERF064 could positively regulate the defense response against P. capsici by modulating the transcription of PR genes in the plant.


Subject(s)
Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Piper nigrum/genetics , Cell Death , Disease Resistance/genetics , Ectopic Gene Expression , Gene Silencing , Host-Pathogen Interactions/genetics , Phenotype , Phytophthora , Piper nigrum/metabolism , Piper nigrum/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Transcription, Genetic
19.
Plant Physiol Biochem ; 142: 151-162, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284139

ABSTRACT

Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.


Subject(s)
Capsicum/physiology , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/physiology , Arabidopsis/genetics , Droughts , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Heat-Shock Response/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Salt Stress/physiology
20.
Mol Genet Genomics ; 294(5): 1311-1326, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31175439

ABSTRACT

Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.


Subject(s)
Capsicum/genetics , Capsicum/parasitology , Chitin/genetics , Phytophthora/pathogenicity , Plant Proteins/genetics , Stress, Physiological/genetics , Acetates/pharmacology , Antioxidants/pharmacology , Chlorophyll/genetics , Cyclopentanes/pharmacology , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Gene Knockdown Techniques/methods , Hydrogen Peroxide/pharmacology , Malondialdehyde/pharmacology , Mannitol/pharmacology , Melatonin/pharmacology , Oxylipins/pharmacology , Plant Diseases/genetics , Plant Diseases/parasitology , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...