Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 49(4): 883-886, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359207

ABSTRACT

A composite strain-modulation strategy to achieve high-performing green µ-LED devices for visible light communication is proposed. Compared with the conventional pre-well structure, introducing a pre-layer to enlarge the lateral lattice constant of the underlayer decreased the strain in the overall strain-modulated layer and MQW. This improved the crystal quality and suppressed the quantum confinement Stark effect. Using this modulation strategy, the green µ-LED array with the compound pre-strained structure exhibited a light output power of 20.5 mW and modulation bandwidth of 366 MHz, corresponding to improvements of 61% and 78%, respectively, compared with those of µ-LEDs with a pre-well structure.

2.
Micromachines (Basel) ; 9(3)2018 Feb 25.
Article in English | MEDLINE | ID: mdl-30424027

ABSTRACT

A radio-frequency micro-electro-mechanical system (RF MEMS) wafer-level packaging (WLP) method using pre-patterned benzo-cyclo-butene (BCB) polymers with a high-resistivity silicon cap is proposed to achieve high bonding quality and excellent RF performance. In this process, the BCB polymer was pre-defined to form the sealing ring and bonding layer by the spin-coating and patterning of photosensitive BCB before the cavity formation. During anisotropic wet etching of the silicon wafer to generate the housing cavity, the BCB sealing ring was protected by a sputtered Cr/Au (chromium/gold) layer. The average measured thickness of the BCB layer was 5.9 µm. In contrast to the conventional methods of spin-coating BCB after fabricating cavities, the pre-patterned BCB method presented BCB bonding layers with better quality on severe topography surfaces in terms of increased uniformity of thickness and better surface flatness. The observation of the bonded layer showed that no void or gap formed on the protruding coplanar waveguide (CPW) lines. A shear strength test was experimentally implemented as a function of the BCB widths in the range of 100⁻400 µm. The average shear strength of the packaged device was higher than 21.58 MPa. A RF MEMS switch was successfully packaged using this process with a negligible impact on the microwave characteristics and a significant improvement in the lifetime from below 10 million to over 1 billion. The measured insertion loss of the packaged RF MEMS switch was 0.779 dB and the insertion loss deterioration caused by the package structure was less than 0.2 dB at 30 GHz.

SELECTION OF CITATIONS
SEARCH DETAIL