Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(38): 15490-15501, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37700615

ABSTRACT

The aim of this study was the preparation of different amorphous silicon-carbon hybrid thin-layer materials according to the liquid phase deposition (LPD) process using single-source precursors. In our study, 2-methyl-2-silyltrisilane (methylisotetrasilane; 2), 1,1,1-trimethyl-2,2-disilyltrisilane (trimethylsilylisotetrasilane; 3), 2-phenyl-2-silyltrisilane (phenylisotetrasilane; 4), and 1,1,2,2,4,4,5,5-octamethyl-3,3,6,6-tetrasilylcyclohexasilane (cyclohexasilane; 5) were utilized as precursor materials and compared with the parent compound 2,2-disilyltrisilane (neopentasilane; 1). Compounds 2-5 were successfully oligomerized at λ = 365 nm with catalytic amounts of the neopentasilane oligomer (NPO). These oligomeric mixtures (NPO and 6-9) were used for the preparation of thin-layer materials. Optimum solution and spin coating conditions were investigated, and amorphous silicon-carbon films were obtained. All thin-layer materials were characterized via UV/vis spectroscopy, light microscopy, spectroscopic ellipsometry, XPS, SEM, and SEM/EDX. Our results show that the carbon content and especially the bandgap can be easily tuned using these single-source precursors via LPD.

2.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34947601

ABSTRACT

Liquid-phase exfoliation (LPE) is a widely used and promising method for the production of 2D nanomaterials because it can be scaled up relatively easily. Nevertheless, the yields achieved by this process are still low, ranging between 2% and 5%, which makes the large-scale production of these materials difficult. In this report, we investigate the cause of these low yields by examining the sonication-assisted LPE of graphene, boron nitride nanosheets (BNNSs), and molybdenum disulfide nanosheets (MoS2 NS). Our results show that the low yields are caused by an equilibrium that is formed between the exfoliated nanosheets and the flocculated ones during the sonication process. This study provides an understanding of this behaviour, which prevents further exfoliation of nanosheets. By avoiding this equilibrium, we were able to increase the total yields of graphene, BNNSs, and MoS2 NS up to 14%, 44%, and 29%, respectively. Here, we demonstrate a modified LPE process that leads to the high-yield production of 2D nanomaterials.

3.
Phys Chem Chem Phys ; 17(40): 27204-9, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26412007

ABSTRACT

CW-ESR line broadening experiments are used to investigate the kinetics of fast hydrogen atom self-exchange reactions. The system NHPI/PINO˙ was studied in five different aprotic organic solvents at room temperature with a focus on the influence of the viscosity of the medium. Our findings support the theoretical descriptions derived from the statistical dynamics of the impact of the reorganization of the medium. In an Arrhenius type description the influence appears in the preexponential factor as a linear dependence on the dynamic viscosity.


Subject(s)
Hydrogen/chemistry , Phthalimides/chemistry , Piperidines/chemistry , Electron Spin Resonance Spectroscopy , Kinetics , Molecular Structure , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL