Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(13): 18653-18664, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34697712

ABSTRACT

Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.


Subject(s)
Cyanobacteria Toxins , Cylindrospermopsis , Brazil , Ecosystem
2.
Sci Rep ; 10(1): 13187, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764641

ABSTRACT

Sources of particulate organic carbon (POC) play important roles in aqueous carbon cycling because internal production can provide labile material that can easily be turned into CO2. On the other hand, more recalcitrant external POC inputs can cause increased loads to sedimentary organic matter that may ultimately cause CH4 release. In order to differentiate sources, stable isotopes offer a useful tool. We present a study on the Itupararanga Reservoir (Brazil) where origins of POC were explored by comparing its isotope ratios (δ13CPOC) to those of dissolved inorganic carbon (δ13CDIC). The δ13CPOC averaged around - 25.1‰ in near-surface waters, which indicates higher primary production inferred from a fractionation model that takes into account carbon transfer with a combined evaluation of δ13CPOC, δ13CDIC and aqueous CO2. However, δ13CPOC values for water depths from 3 to 15 m decreased to - 35.6‰ and indicated different carbon sources. Accordingly, the δ13CDIC values of the reservoir averaged around + 0.6‰ in the top 3 m of the water column. This indicates CO2 degassing and photosynthesis. Below this depth, DIC isotope values of as low as - 10.1‰ showed stronger influences of respiration. A fractionation model with both isotope parameters revealed that 24% of the POC in the reservoir originated from detritus outside the reservoir and 76% of it was produced internally by aqueous CO2 fixation.

3.
Ecotoxicol Environ Saf ; 162: 616-624, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30031910

ABSTRACT

Water contamination of As is a big issue in many areas around the globe. Therefore, cheap and efficient techniques are essential facing traditional treatment methods. Then, biochars (BC) emerged recently as material that can be used for As removal. However, research about efficiency of BC produced from local feedstock is still needed. The purpose of this study is to assess the efficiency of BC produced from sugarcane bagasse (SB) together with corncob husk (CH) with and without Fe(III) (BCFe) modification to be used for removal of As(III) from waters. The BC and BCFe produced at different pyrolysis temperatures were characterised using FTIR and SEM/EDS. Adsorption capacities of BC and BCFe were evaluated via batch adsorption, desorption and column tests and their performance was compared with adsorption using activated carbon. The results showed that Fe modification improve substantially the As(III) adsorption in a way that both BCFe-SB and BCFe-CH removed from 85% to 99.9% from 1000 µg/L As(III) solutions. Both materials fitted well in Langmuir model and the maximum adsorption capacity was 20 mg/g for BCFe-SB and 50 mg/g for BCFe-CH. The adsorption kinetics of BCFe was fast (≤ 30 min) and it had a better performance than activated carbon. The column tests showed that the process is efficient even at high As(III) concentrations. The fast removal process and good removal results make the BCFe-SB and BCFe-CH attractive for in situ and commercial (filters) use, since time and efficiency are required in new technologies.


Subject(s)
Arsenites/isolation & purification , Cellulose/chemistry , Charcoal/chemistry , Ferric Compounds/chemistry , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , Models, Theoretical , Saccharum/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Water Purification , Zea mays/chemistry
4.
Chemosphere ; 188: 208-217, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28886555

ABSTRACT

Humic substances (HS) are ubiquitous organic compounds able to affect mobility and availability of arsenic (As) in aquatic systems. Although it is known that associations between HS and As occur mainly via iron (Fe)-cationic bridges, the behaviour and distribution of this metalloid in HS- and Fe-rich environments is still not fully understood. In this paper, the quality of HS from different rivers in Brazil and Germany and its influence on the behaviour of As(V) under different Fe(III) concentrations were investigated. HS were extracted from four different rivers (Cascatinha, Holtemme, Selke and Warme Bode), characterised and fractionated into different molecular weight sizes (10, 5 and 1 kDa). Complexation tests were performed using an ultrafiltration system and 1 kDa membranes. All data was analysed using the Kohonen neural network (SOM - Self organising maps). All samples, except Selke, exhibited similar results of free As (<1 kDa). The results suggested that associations between HS, Fe and As were dependent on nitrogen (N)-aromatic carbon (C), amount of sulphur (S) and the molecular size of the HS. Although all HS appeared to be similar after looking at most variables analysed, the SOM could discriminate them into three different groups. Characterisation of the HS indicated that they had terrestrial material (from C3 plants) as precursor material. Most of the As and Fe was distributed in the fractions of higher (>10 kDa) and lower (<1 kDa) size. HS quality is an important factor to take into account when studying the behaviour of As in HS-rich environments.


Subject(s)
Arsenic/analysis , Ferric Compounds/pharmacology , Fresh Water/analysis , Humic Substances/analysis , Brazil , Carbon/analysis , Fresh Water/chemistry , Germany , Iron/analysis , Nitrogen/analysis , Particle Size , Sulfur/analysis , Ultrafiltration/methods
5.
Chemosphere ; 164: 290-298, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27592318

ABSTRACT

The distribution of metals and metalloids among particulate, dissolved, colloidal, free, and labile forms in natural waters is of great environmental concern since it determines their transportation behaviour and bioavailability. Organic matter can have an important role for this distribution process, since it is an important complexing agent and ubiquitous in the aquatic environment. We studied the distribution, mobility and bioavailability of Al, As and Fe in natural waters of a mining area (Quadrilátero Ferrífero, Brazil) and the influence of organic matter in these processes. Water samples were taken from 12 points during the dry and rainy seasons, filtrated at 0.45 µm and ultrafiltrated (<1 kDa) to separate the particulate, colloidal and free fractions. Diffusive gradients in thin films (DGT) were deployed at 5 sampling points to study the labile part of the elements. Total and dissolved organic carbon and the physicochemical parameters were measured along with the sampling. The results of ultrafiltration (UF) and DGT were compared. The relationship among the variables was studied through multivariate analysis (Kohonen neural network), which showed that the seasonality did not impact most of the samples. Fe and Al occurred mainly in the particulate fraction whereas As appeared more in the free fraction. Most of the dissolved Fe and Al were inert (colloidal form) while As was more labile and bioavailable. The results showed that sampling points with a higher quantity of complexed Fe (colloidal fraction) showed less labile As, which may indicate formation of ternary complexes among organic matter, As and Fe.


Subject(s)
Arsenic/analysis , Environmental Monitoring/methods , Mining , Rivers/chemistry , Water Pollutants, Chemical/analysis , Biological Availability , Brazil , Metals/analysis , Rain , Seasons , Solubility , Ultrafiltration/methods , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...