Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 21(1): 240, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907898

ABSTRACT

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Subject(s)
Cyclin-Dependent Kinases , Drosophila melanogaster , Animals , Mice , Cell Cycle , Cyclin-Dependent Kinases/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurons/metabolism , Phosphorylation , rhoA GTP-Binding Protein/metabolism
2.
Metallomics ; 12(11): 1656-1678, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33206086

ABSTRACT

Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 µM), which was higher than that of MnCl2 (LC50∼ 27 µM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 µM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.


Subject(s)
Cerebellum/pathology , Manganese/toxicity , Neurodegenerative Diseases/pathology , Neurons/pathology , Neurotoxins/toxicity , Animals , Cell Death/drug effects , Copper/metabolism , Cytoplasmic Granules/metabolism , Homeostasis/drug effects , Iron/metabolism , Mice , Neurons/drug effects , Pesticides/toxicity , Potassium/metabolism , Proteome/metabolism , Proteomics
3.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30967472

ABSTRACT

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Subject(s)
E2F1 Transcription Factor/metabolism , E2F4 Transcription Factor/metabolism , Gene Expression Regulation , Neurons/metabolism , Repressor Proteins/biosynthesis , Stroke/metabolism , Trans-Activators/biosynthesis , Amino Acid Motifs , Animals , Cell Death , E2F1 Transcription Factor/genetics , E2F4 Transcription Factor/genetics , Mice , Mice, Transgenic , Neurons/pathology , Repressor Proteins/genetics , Stroke/genetics , Stroke/pathology , Trans-Activators/genetics
4.
J Neurochem ; 150(3): 312-329, 2019 08.
Article in English | MEDLINE | ID: mdl-30734931

ABSTRACT

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Neurons/metabolism , Protein Kinases/metabolism , Tacrolimus Binding Proteins/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Cell Death/drug effects , HEK293 Cells , Humans , Mice , Mice, Knockout , Neurons/drug effects , Neurotoxins/pharmacology , Parkinson Disease/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
5.
J Neurochem ; 112(2): 497-510, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19895669

ABSTRACT

DNA damage is a critical component of neuronal death underlying neurodegenerative diseases and injury. Neuronal death evoked by DNA damage is characterized by inappropriate activation of multiple cell cycle components. However, the mechanism regulating this activation is not fully understood. We demonstrated previously that the cell division cycle (Cdc) 25A phosphatase mediates the activation of cyclin-dependent kinases and neuronal death evoked by the DNA damaging agent camptothecin. We also showed that Cdc25A activation is blocked by constitutive checkpoint kinase 1 activity under basal conditions in neurons. Presently, we report that an additional factor is central to regulation of Cdc25A phosphatase in neuronal death. In a gene array screen, we first identified Pim-1 as a potential factor up-regulated following DNA damage. We confirmed the up-regulation of Pim-1 transcript, protein and kinase activity following DNA damage. This induction of Pim-1 is regulated by the nuclear factor kappa beta (NF-kappaB) pathway as Pim-1 expression and activity are significantly blocked by siRNA-mediated knockdown of NF-kappaB or NF-kappaB pharmacological inhibitors. Importantly, Pim-1 activity is critical for neuronal death in this paradigm and its deficiency blocks camptothecin-mediated neuronal death. It does so by activating Cdc25A with consequent activation of cyclin D1-associated kinases. Taken together, our results demonstrate that Pim-1 kinase plays a central role in DNA damage-evoked neuronal death by regulating aberrant neuronal cell cycle activation.


Subject(s)
Cell Cycle/physiology , DNA Damage/physiology , Neurons/physiology , Proto-Oncogene Proteins c-pim-1/metabolism , Adenosine Triphosphate/metabolism , Animals , Camptothecin/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Death/physiology , Cell Line, Transformed , Cerebral Cortex/cytology , Chromatin Immunoprecipitation/methods , DNA Damage/drug effects , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Knockout , NF-kappa B/metabolism , Neurons/drug effects , Proto-Oncogene Proteins c-pim-1/deficiency , Proto-Oncogene Proteins c-pim-1/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology , Staurosporine/pharmacology , Sulfur Isotopes/metabolism , Time Factors , Transfection/methods , Up-Regulation/drug effects , Up-Regulation/physiology , cdc25 Phosphatases/metabolism
6.
J Neurosci ; 28(21): 5559-69, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18495890

ABSTRACT

DNA damage is an important initiator of neuronal apoptosis and activates signaling events not yet fully defined. Using the camptothecin-induced DNA damage model in neurons, we previously showed that cyclin D1-associated cell cycle cyclin-dependent kinases (Cdks) (Cdk4/6) and p53 activation are two major events leading to activation of the mitochondrial apoptotic pathway. With gene array analyses, we detected upregulation of Cited2, a CBP (cAMP response element-binding protein-binding protein)/p300 interacting transactivator, in response to DNA damage. This upregulation was confirmed by reverse transcription-PCR and Western blot. CITED2 was functionally important because CITED2 overexpression promotes death, whereas CITED2 deficiency protects. Cited2 upregulation is upstream of the mitochondrial death pathway (BAX, Apaf1, or cytochrome c release) and appears to be independent of p53. However, inhibition of the Cdk4 blocked Cited2 induction. The Cited2 prodeath mechanism does not involve Bmi-1 or p53. Instead, Cited2 activates peroxisome proliferator-activated receptor-gamma (PPARgamma), an activity that we demonstrate is critical for DNA damage-induced death. These results define a novel neuronal prodeath pathway in which Cdk4-mediated regulation of Cited2 activates PPARgamma and consequently caspase.


Subject(s)
Cerebral Cortex/cytology , DNA Damage/physiology , DNA-Binding Proteins/physiology , Neurons/physiology , PPAR gamma/physiology , Repressor Proteins/physiology , Signal Transduction/physiology , Trans-Activators/physiology , Anilides/pharmacology , Animals , Camptothecin/toxicity , Caspases/metabolism , Cell Death/drug effects , Cell Death/physiology , Cells, Cultured , Cytochromes c/metabolism , DNA Damage/drug effects , DNA-Binding Proteins/deficiency , Embryo, Mammalian , Enzyme Inhibitors/toxicity , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/drug effects , Thiazolidinediones/pharmacology , Time Factors , Trans-Activators/deficiency , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...