Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 23(1): 150, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918837

ABSTRACT

BACKGROUND: Zygomatic implants are widely used in the rehabilitation of severely atrophic maxillae, but implant placement is not without risks, and it can potentially cause damage to related anatomical structures. The aim of this study was to perform a comparative analysis of the accuracy of static navigation systems in placing zygomatic dental implants in comparison to dynamic navigation systems. METHODS: Sixty zygomatic dental implants were randomly allocated to one of three study groups, categorized by which implant placement strategy was used: A: computer-aided static navigation system (n = 20) (GI); B: computer-aided dynamic navigation system (n = 20) (NI); or C: free-hand technique (n = 20) (FHI). For the computer-aided study groups, a preoperative cone-beam computed tomography (CBCT) scan of the existing situation was performed in order to plan the approach to be used during surgery. Four zygomatic dental implants were inserted in each of fifteen polyurethane stereolithographic models (n = 15), with a postoperative CBCT scan taken after the intervention. The pre- and postoperative CBCT scans were then uploaded to a software program used in dental implantology to analyze the angular deviations, apical end point, and coronal entry point. Student's t-test was used to analyze the results. RESULTS: The results found statistically significant differences in apical end-point deviations between the FHI and NI (p = 0.0053) and FHI and GI (p = 0.0004) groups. There were also statistically significant differences between the angular deviations of the FHI and GI groups (p = 0.0043). CONCLUSIONS: The manual free-hand technique may enable more accurate placement of zygomatic dental implants than computer-assisted surgical techniques due to the different learning curves required for each zygomatic dental implant placement techniques.


Subject(s)
Dental Implants , Surgery, Computer-Assisted , Humans , Surgery, Computer-Assisted/methods , Dental Implantation, Endosseous , Computers , Software , Cone-Beam Computed Tomography , Computer-Aided Design , Imaging, Three-Dimensional
2.
J Clin Exp Dent ; 15(12): e1035-e1044, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38186921

ABSTRACT

Background: Analyze and compare the accuracy of zygomatic dental implant placement carried out using a static navigation surgery, a dynamic navigation surgery and an augmented reality appliance. Material and Methods: Eighty (80) zygomatic dental implants were randomly assigned to one of four study groups: A: static navigation implant surgery (n = 20) (GI); B: dynamic navigation implant surgery (n = 20) (NI); C: augmented reality appliance implant placement (n = 20) (ARI) and D: free hand technique (n = 20) (FHI). A preoperative cone-beam computed tomography (CBCT) scan of the existing situation was performed to plan the surgical approach for the computer assisted implant surgery study groups. Four zygomatic dental implants were placed in anatomical-based polyurethane models (n = 20) manufactured by stereolithography, and a postoperative CBCT scan was taken. Subsequently, the preoperative planning and postoperative CBCT scans were uploaded to dental implant software to analyze the coronal global, apical global, and angular deviations. Results were analyzed using linear regression models with repeated measures to assess the differences according to the group, according to the position, and the interaction between both variables. If statistically significant differences were detected, 2-to-2 comparisons were made between the groups/positions. Results: The results did not show statistically significant differences between the coronal global deviations of GI (5.54 ± 1.72 mm), NI (5.43 ± 2.13 mm), ARI (5.64 ± 1.11 mm) and FHI (4.75 ± 1.58 mm). However, showed statistically significant differences between the apical global deviations of FHI (3.20 ± 1.45 mm) and NI (4.92 ± 1.89 mm) (p = 0.0078), FHI and GI (5.33 ± 2.14 mm) (p = 0.0005) and FHI and ARI (4.88 ± 1.54 mm) (p = 0.0132). In addition, the results showed also statistically significant differences between the angular deviations of FHI (8.47º ± 4.40º) and NI (7.36º ± 4.12º) (p = 0.0086) and between GI (5.30º ± 2.80º) and ARI (9.60º ± 4.25º) (p = 0.0005). Conclusions: Free-hand technique provides greater accuracy of zygomatic dental implant placement than computer-assisted implant surgical techniques, and zygomatic dental implants placed in the anterior region are more accurate than in the posterior region. However, it is an in vitro study and further clinical studies must be conducted to extrapolate the results to the clinical setting. Key words:Implantology, computer assisted implant surgery, image-guided surgery, augmented reality, navigation surgery, zygomatic implants.

3.
J Clin Med ; 11(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35268527

ABSTRACT

The objective of this in vitro study was to evaluate and compare the accuracy of zygomatic dental implant (ZI) placement carried out using a dynamic navigation system. Materials and Methods: Forty (40) ZIs were randomly distributed into one of two study groups: (A) ZI placement via a computer-aided dynamic navigation system (n = 20) (navigation implant (NI)); and (B) ZI placement using a conventional free-hand technique (n = 20) (free-hand implant (FHI)). A cone-beam computed tomography (CBCT) scan of the existing situation was performed preoperatively to plan the surgical approach for the computer-aided study group. Four zygomatic dental implants were placed in anatomically based polyurethane models (n = 10) manufactured by stereolithography, and a postoperative CBCT scan was performed. Subsequently, the preoperative planning and postoperative CBCT scans were added to dental implant software to analyze the coronal entry point, apical end point, and angular deviations. Results were analyzed using the Student's t-test. Results: The results showed statistically significant differences in the apical end-point deviations between FHI and NI (p = 0.0018); however, no statistically significant differences were shown in the coronal entry point (p = 0.2617) or in the angular deviations (p = 0.3132). Furthermore, ZIs placed in the posterior region showed more deviations than the anterior region at the coronal entry point, apical end point, and angular level. Conclusions: The conventional free-hand technique enabled more accurate placement of ZIs than the computer-assisted surgical technique. In addition, placement of ZIs in the anterior region was more accurate than that in the posterior region.

SELECTION OF CITATIONS
SEARCH DETAIL
...