Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 7: e6470, 2019.
Article in English | MEDLINE | ID: mdl-30809452

ABSTRACT

The reef crests of the Jardines de la Reina National Park (JRNP) are largely formed by Acropora palmata, but colonies of A. cervicornis and the hybrid A. prolifera are also present. This study shows spatial distribution of colonies, thickets and live fragments of these species in the fore reefs. Snorkeling was used to perform the direct observations. The maximum diameter of 4,399 colonies of A. palmata was measured and the health of 3,546 colonies was evaluated. The same was done to 168 colonies of A. cervicornis and 104 colonies of A. prolifera. The influence of the location and marine currents on a number of living colonies of A. palmata was analyzed. For such purpose, reef crests were divided into segments of 500 m. The marine park was divided into two sectors: East and West. The Caballones Channel was used as the reference dividing line. The park was also divided into five reserve zones. We counted 7,276 live colonies of Acropora spp. 1.4% was A. prolifera, 3.5% A. cervicornis and 95.1% A. palmata. There were 104 thickets of A. palmata, ranging from eight to 12 colonies, and 3,495 fragments; 0.6% was A. cervicornis and the rest A. palmata (99.4%). In the East sector, 263 colonies (3.8% of the total), six thickets (5.8%) and 32 fragments (1%) of A. palmate were recorded. In the same sector, there were 11 fragments (50%) of A.cervicornis and two (2%) colonies of A. prolifera. Health of A. palmata was evaluated as good and not so good in the study area. Health of A. cervicornis was critical and health of A. prolifera was good in all five reserve zones. There was a significant increase in the number of colonies from east to west (Χ2 = 11.5, gl = 3.0, p = 0.009). This corroborates the existence of an important abundance differences between the eastern and the western region of the JRNP. A negative relationship was observed between the number of colonies and the distance from the channel (Χ2 = 65.0, df = 3.0, p < 0.001). The influence of the channel, for the live colonies of A. palmata is greater within the first 2,000 m. It then decreases until approximately 6,000 m, and no significant increase beyond. The orientation of the reef crests significantly influenced the abundance of the colonies (Χ2 = 15.5, df = 2.9, p = 0.001). The results presented here provide a baseline for future research on the status of the populations of Acropora spp., considering that there has been a certain recovery of the species A. palmata during the last 10-16 years. Given the current status of the populations of Acropora spp., conservation actions focusing A. cervicornis should be prioritized.

2.
Front Microbiol ; 9: 510, 2018.
Article in English | MEDLINE | ID: mdl-29666607

ABSTRACT

Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.

SELECTION OF CITATIONS
SEARCH DETAIL