Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 817: 153055, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35032528

ABSTRACT

Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Wastewater , Wetlands
2.
Environ Sci Pollut Res Int ; 24(6): 5868-5876, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28063086

ABSTRACT

Sediment microbial fuel cells (SMFCs) are devices that generate electrical energy through sediments rich in organic matter (OM). The present study assessed the potential of sediments collected at two sites in Yucatan, Mexico, (the swamp of Progreso port and Yucalpetén dock) to be used in these electrochemical devices. Sediments were collected during the rainy and winter seasons and were monitored in the SMFC for 120 days through electrochemical and physicochemical characterization. OM removal in the SMFC ranged from 8.1-18.01%, generating a maximum current density of 232.46 mA/cm2 and power density of 95.85 mW/cm2. SUVA analysis indicated that with a young soil, the ratio E4/E6 presented evidence directly related to the degradation of aromatic and aliphatic compound formation, implying humification and, therefore, sediment enrichment.


Subject(s)
Bioelectric Energy Sources , Geologic Sediments/microbiology , Biodegradation, Environmental , Electrodes , Geologic Sediments/analysis , Geologic Sediments/chemistry , Humic Substances/analysis , Mexico , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL