Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Sci ; 19(1): 204-224, 2023.
Article in English | MEDLINE | ID: mdl-36594086

ABSTRACT

In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFß1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFß1 leads NDRG1, downstream of GSK3ß, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFß and GSK3ß inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFß to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFß and GSK3ß.


Subject(s)
Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , Transforming Growth Factor beta , Triple Negative Breast Neoplasms , Humans , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , NF-kappa B/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism
2.
Antioxidants (Basel) ; 10(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572626

ABSTRACT

Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.

3.
J Pers Med ; 10(4)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138097

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.

4.
Eur J Nutr ; 58(8): 3207-3219, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30460610

ABSTRACT

PURPOSE: This study was aimed to determine the impact of hydroxytyrosol (HT), a minor compound found in olive oil, on breast cancer stem cells (BCSCs) and the migration capacity of triple-negative breast cancer (TNBC) cell lines through the alteration of epithelial-to-mesenchymal transition (EMT) and embryonic signaling pathways. METHODS: BCSCs self-renewal was determined by the mammosphere-forming efficiency in SUM159PT, BT549, MDA-MB-231 and Hs578T TNBC cell lines. Flow cytometric analysis of CD44+/CD24-/low and aldehyde dehydrogenase positive (ALDH+) subpopulations, migration by the "wound healing assay", invasion and Western blot of EMT markers and TGFß signaling were investigated in SUM159PT, BT549 and MDA-MB-231 cell lines. Wnt/ß-catenin signaling was assessed by Western blot in BT549 cells expressing WNT1 and MDA-MB-231 cells. Changes in TGFß activity was determined by SMAD Binding Element (SBE) reporter assay. RESULTS: HT reduced BCSCs self-renewal, ALDH+ (aldehyde dehydrogenase) and CD44+/CD24-/low subpopulations, tumor cell migration and invasion. Consistently, HT suppressed Wnt/ß-catenin signaling by decreasing p-LRP6, LRP6, ß-catenin and cyclin D1 protein expression and the EMT markers SLUG, ZEB1, SNAIL and VIMENTIN. Finally, HT inhibited p-SMAD2/3 and SMAD2/3 in SUM159PT, BT549 and MDA-MB-231 cells, what was correlated with a less TGFß activity. CONCLUSION: In conclusion, we report for the first time the inhibitory role of HT on BCSCs and tumor cell migration by targeting EMT, Wnt/ß-catenin and TGFß signaling pathways. Our findings highlight the importance of the chemopreventive compound HT as a novel candidate to be investigated as an alternative targeted therapy for TNBC.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/drug effects , Phenylethyl Alcohol/analogs & derivatives , Transforming Growth Factor beta/drug effects , Triple Negative Breast Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , beta Catenin/drug effects , Antioxidants/pharmacology , Blotting, Western , Flow Cytometry , Humans , Phenylethyl Alcohol/pharmacology , Tumor Cells, Cultured
5.
Clin Cancer Res ; 24(22): 5697-5709, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30012564

ABSTRACT

Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFß1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFß and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFß and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFß was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFß/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer. Clin Cancer Res; 24(22); 5697-709. ©2018 AACR.


Subject(s)
Activating Transcription Factor 4/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Activating Transcription Factor 4/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Immunohistochemistry , Mice , Models, Biological , Prognosis , RNA, Small Interfering/genetics , Transcriptome , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...