Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1260707, 2023.
Article in English | MEDLINE | ID: mdl-38078072

ABSTRACT

Climate change leads to novel species interactions and continues to reshuffle ecological communities, which significantly declines carbon accumulation rates in mature forests. Still, little is known about the potential influence of multiple global change factors on long-term biomass dynamics and functional trait combinations. We used temporal demographic records spanning 26 years and extensive databases of functional traits to assess how old-growth subtropical forest biomass dynamics respond to various climatic change scenarios (extreme drought, subsequent drought, warming, elevated CO2 concentrations, and windstorm). We found that the initial severe drought, subsequent drought and windstorm events increased biomass loss due to tree mortality, which exceeded the biomass gain produced by survivors and recruits, ultimately resulting in more negative net biomass balances. These drought and windstorm events caused massive biomass loss due to tree mortality that tended towards acquisition species with high hydraulic efficiency, whereas biomass growth from survivors and recruits tended to consist of acquisition species with high hydraulic safety. Compensatory growth in this natural forest provided good explanation for the increase in biomass growth after drought and windstorm events. Notably, these dominant-species transitions reduced carbon storage and residence time, forming a positive carbon-climate feedback loop. Our findings suggest that climate changes could alter functional strategies and cause shifts in new dominant species, which could greatly reduce ecological functions and carbon gains of old-growth subtropical forests.

2.
Ecol Lett ; 26(12): 2098-2109, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847674

ABSTRACT

We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.


Subject(s)
Droughts , Tropical Climate , Humans , Forests , Trees/physiology , Wood , Plant Leaves
3.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Article in English | MEDLINE | ID: mdl-35577983

ABSTRACT

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Subject(s)
Climate Change , Ecosystem , Forests , Trees , Water
5.
New Phytol ; 232(1): 148-161, 2021 10.
Article in English | MEDLINE | ID: mdl-34171131

ABSTRACT

Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.


Subject(s)
Trees , Tropical Climate , Forests , Habits , Plant Leaves
6.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33771870

ABSTRACT

Although one-quarter of plant and vertebrate species are threatened with extinction, little is known about the potential effect of extinctions on the global diversity of ecological strategies. Using trait and phylogenetic information for more than 75,000 species of vascular plants, mammals, birds, reptiles, amphibians, and freshwater fish, we characterized the global functional spectra of each of these groups. Mapping extinction risk within these spectra showed that larger species with slower pace of life are universally threatened. Simulated extinction scenarios exposed extensive internal reorganizations in the global functional spectra, which were larger than expected by chance for all groups, and particularly severe for mammals and amphibians. Considering the disproportionate importance of the largest species for ecological processes, our results emphasize the importance of actions to prevent the extinction of the megabiota.

7.
Ecol Lett ; 24(3): 451-463, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33316132

ABSTRACT

Extreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and extensive databases of traits to understand the responses of 338 tropical dry forests tree species to ENSO2015 , the driest event in decades in Northern South America. Functional differences between species were related to the hydraulic safety-efficiency trade-off, but unexpectedly, dominant species were characterised by high investment in leaf and wood tissues regardless of their leaf phenological habit. Despite broad functional trait combinations, tree mortality was more widespread in the functional space than tree growth, where less adapted species showed more negative net biomass balances. Our results suggest that if dry conditions increase in this ecosystem, ecological functionality and biomass gain would be reduced.


Subject(s)
Droughts , Tropical Climate , Ecosystem , Forests , North America , Plant Leaves , Trees , Water
8.
Science ; 353(6306): 1383-1387, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27708031

ABSTRACT

Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Forests , Trees , Caribbean Region , Decision Making , Grassland , Latin America , Seasons , Tropical Climate , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...