Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1301: 342448, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553120

ABSTRACT

BACKGROUND: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis. RESULTS: We propose for the first time a new generation of ultra-low viscosity bimetallic MILs composed of two paramagnetic Mn(II) complexes characterized by their easy usage in dispersive liquid-liquid microextraction (DLLME). The approach does not require dispersive solvent and the MIL-DLLME setup was directly combined with high-performance liquid chromatography (HPLC) and fluorescence detection (FD), without any back-extraction step. The approach was evaluated for the determination of five monohydroxylated polycyclic aromatic hydrocarbons, as carcinogenic biomarkers, in human urine. Optimum conditions of the MIL-DLLME method included the use of a low MIL volume (75 µL), a short extraction time (5 min), and no need of any dispersive solvent neither NaCl. The method presented limits of detection down to 7.50 ng L-1, enrichment factors higher than 17, and provided inter-day relative standard deviation lower than 11%. Analysis of urine samples was successfully performed, with biomarker content found at levels between 0.24 and 7.8 ng mL-1. SIGNIFICANCE: This study represents the first liquid-phase microextraction method using the new generation of low-viscous bimetallic MILs. The proposed MIL-DLLME approach represents 2 important advances with respect to previous methods employing bimetallic MILs: 1) no dispersive solvent is required, and 2) direct injection of the MIL in the HPLC is possible after minor dilution (no back extraction steps are required). Therefore, the microextraction strategy is simple, rapid, and consumes very small amounts of energy.

2.
J Chromatogr A ; 1707: 464291, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37582319

ABSTRACT

Sample preparation is a key step in most analytical methods, generally regarded as the least green step of the entire procedure. The existing green metrics assess the greenness of sample preparation techniques through the evaluation of the whole analytical procedure: including sampling, sample preparation, and the final detection/quantitation. Such inclusion of the entire method makes assessing the sustainability of a newly developed sample preparation technique quite challenging, as many aspects not solely linked to the sample preparation step are unavoidably considered. Thus, an alternative metric that can explicitly and exclusively evaluate the sample preparation is proposed. The metric is simple; it reports the result with a clock-like diagram, displaying the greenness outcome of main sample preparation parameters and a total score. This new metric can differentiate closely related microextraction approaches in terms of sustainability. The metric is also open-source and can be used by downloading the Excel sheet provided.


Subject(s)
Specimen Handling
3.
J Chromatogr A ; 1685: 463577, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36323106

ABSTRACT

Magnetic ionic liquids (MILs) are materials of special interest in analytical chemistry and, particularly, in analytical microextraction. These solvents possess several of the properties derived from their inherent nature of ionic liquids, combined with their magnetism, that permits their manipulation with an external magnetic field. This feature allows for performing typical steps of the microextraction procedure in a simpler manner with the aid of a strong magnet. Although there are several important reviews summarizing the most innovative advances in this field, there is a gap of information, as they do not provide useful details and tips related to the experimental set up of these procedures. This tutorial review fills this gap by providing a guide for the proper handling of MILs, their manipulation with magnets, and their proper hyphenation with the most used analytical techniques. Attention is paid to dispersive liquid-liquid microextraction, stir-bar dispersive liquid microextraction, aqueous biphasic systems, and single-drop microextraction, for being the analytical microextraction techniques mostly employed with MILs. This review also introduces a classification of the MILs employed in analytical microextraction in three classes (denoted as A, B, and C) as a function of the MIL nature (metal-containing anion, metal-containing cation, and radical-containing ion), and discuss about the prospect and future trends regarding new MIL families in microextraction together with new directions expected in these procedures.


Subject(s)
Ionic Liquids , Liquid Phase Microextraction , Humans , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Magnetics , Solvents/chemistry , Magnetic Phenomena
4.
Talanta ; 225: 122053, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592775

ABSTRACT

Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.

5.
Anal Chim Acta ; 1143: 225-249, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33384121

ABSTRACT

Since the development of liquid-phase microextraction (LPME), different LPME modes depending on the experimental set-up to carry out the extraction have been described. Dispersive liquid-liquid microextraction (DLLME), in which a small amount of the water-insoluble extraction solvent is dispersed in the sample, is the most successful mode in terms of number of applications reported. Advances within DLLME have been mainly shifted to the incorporation of green, smart and tunable materials as extraction solvents to improve the sustainability and efficiency of the method. In this sense, hydrophilic media represent a promising alternative since the water-miscibility of these substances increases the mass transfer of the analytes to the extraction media, leading to higher extraction efficiencies. Considering the variety of hydrophilic media that have been incorporated in LPME approaches resembling DLLME, this review aims to classify these methods in order to clarify the confusing terminology used for some of the strategies. Hydrophilic media covered in this review comprise surfactants, polar organic solvents, deep eutectic solvents, ionic liquids, water-miscible polymers, and switchable solvents. Different physicochemical mechanisms of phase separation are discussed for each LPME method, including the coacervation phenomena and other driving forces, such as pH, temperature, salting-out effect, metathesis reaction and organic solvents. LPME modes are classified (in cloud-point extraction, coacervative extraction, aqueous biphasic systems, and different DLLME modes depending on the extraction medium) according to both the nature of the water-miscible extraction phase and the driving force of the separation. In addition, the main advances and analytical applications of these methods in the last three years are described.

6.
J Chromatogr A ; 1619: 460910, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32008827

ABSTRACT

A pH-sensitive polymer based on the poly(styrene-alt-maleic anhydride) co-polymer serves as basis to develop a microextraction method (pH-HGME) in direct combination with high-performance liquid chromatography (HPLC) and fluorescence detection (FD) for the determination of seven organic compounds, including three polycyclic aromatic hydrocarbons (PAHs), three monohydroxylated PAHs and one alkylphenol, in urine. The method bases on the structural modification of the pH-sensitive polymer in the aqueous sample at a high pH value, followed by the formation and insolubilization of a hydrogel containing the preconcentrated analytes by decreasing the pH, and the direct injection of the hydrogel-rich phase in the HPLC-FD system. The optimization of the main variables permitted the selection of low amounts of aqueous sample (10 mL), which was mixed with 10 mg of co-polymer also present in a low volume (150 µL) of concentrated NaOH. The method further requires the addition of 200 µL of concentrated HCl, 3 min of stirring, and 15 min of centrifugation. This pH-HGME-HPLC-FD method presented low limits of detection, ranging from 0.001 µg L-1 to 0.09 µg L-1 in ultrapure water, average relative recoveries of 96.9% for the concentration level of 0.60 µg L-1, and enrichment factors between 1.50 and 17.7. The proposed method also exhibited high precision, with intermediate relative standard deviations lower than 16% for a concentration level of 0.60 µg L-1. The developed pH-HGME-HPLC-FD method performed adequately when analyzing two human urine samples provided by a non-smoker male and a smoker female, respectively. One of the target analytes (2-hydroxynaphthalene) was quantified in both samples using the standard addition method, with a predicted concentration of 7.3 ± 0.4 µg L-1 in the non-smoker male urine and 19.3 ± 0.6 µg L-1 in the smoker female urine.


Subject(s)
Chromatography, High Pressure Liquid , Liquid Phase Microextraction/methods , Maleates/chemistry , Polycyclic Aromatic Hydrocarbons/urine , Polystyrenes/chemistry , Female , Fluorescence , Humans , Hydrogen-Ion Concentration , Male , Phenols/urine , Polycyclic Aromatic Hydrocarbons/isolation & purification
7.
Talanta ; 203: 305-313, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31202344

ABSTRACT

Two ILs containing guanidinium cations (butylguanidinium chloride -C4Gu-Cl- and hexylguanidinium chloride -C6Gu-Cl-) were synthesized and characterized. Their cytotoxicity was also assessed, obtaining adequate CC50 values of 680 ±â€¯99 mg·L-1 for C4Gu-Cl and 135 ±â€¯8 mg·L-1 for C6Gu-Cl. Miniaturized aqueous biphasic systems (µ-ABSs) were developed using amounts lower than 1% (w/w) of these synthesized guanidinium-based ILs, K3PO4 as salting-out agent, and ultrapure water. The phases diagrams of both systems were determined, and the C4Gu-Cl-based µ-ABS was selected for the development of a microextraction method in combination with high performance liquid chromatography (HPLC) with fluorescence detection (FD) for the determination of five polycyclic aromatic hydrocarbons (PAHs) as model analytes. A point of the biphasic region of the C4Gu-Cl-based µ-ABS corresponding to a mixture of 0.75% (w/w) of the IL, 37.7% (w/w) of K3PO4 and 61.55% (w/w) of ultrapure water, and 30 min of equilibrium time, were selected as optimum conditions to obtain high enrichment factors and proper analytical microextraction performance. The C4Gu-Cl-based µ-ABS-HPLC-FD method exhibited low limits of detection, between 0.010 ng·L-1 and 2.0 ng·L-1, average relative recoveries of 96.7%, high enrichment factors ranging from 44.1 to 60.4, average extraction efficiencies of 61.7%, and intermediate precision relative standard deviations lower than 17% for a concentration level of 12 ng·L-1. The developed method was applied successfully in the analysis of different tap water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...