Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069331

ABSTRACT

Perirenal adipose tissue (PRAT) surrounding the kidney is emerging as a player and novel independent risk factor in diabetic kidney disease (DKD); DKD is a complication of diabetes and is a major cause of increased cardiovascular (CV) risk and CV mortality in affected patients. We determined the effect of diabetes induction on (i) kidney and CV damage and (ii) on the expression of proinflammatory and profibrotic factors in both the PRAT and the mesenteric adipose tissue (MAT) of Munich Wistar Frömter (MWF) rats. The 16-week-old male MWF rats (n = 10 rats/group) were fed standard chow (MWF-C) or a high-fat/high-sucrose diet for 6 weeks together with low-dose streptozotocin (15 mg/kg i.p.) at the start of dietary exposure (MWF-D). Phenotyping was performed at the end of treatment through determining water intake, urine excretion, and oral glucose tolerance; use of the homeostatic model assessment-insulin resistance index (HOMA-IR) evidenced the development of overt diabetes manifestation in MWF-D rats. The kidney damage markers Kim-1 and Ngal were significantly higher in MWF-D rats, as were the amounts of PRAT and MAT. A diabetes-induced upregulation in IL-1, IL-6, Tnf-α, and Tgf-ß was observed in both the PRAT and the MAT. Col1A1 was increased in the PRAT but not in the MAT of MWF-D, whereas IL-10 was lower and higher in the PRAT and the MAT, respectively. Urinary albumin excretion and blood pressure were not further increased by diabetes induction, while heart weight was higher in the MWF-D. In conclusion, our results show a proinflammatory and profibrotic in vivo environment in PRAT induced by diabetes which might be associated with kidney damage progression in the MWF strain.


Subject(s)
Diabetes Mellitus , Kidney Diseases , Humans , Rats , Male , Animals , Rats, Wistar , Albuminuria , Up-Regulation , Inflammation , Collagen , Adipose Tissue
2.
Acta Physiol (Oxf) ; 239(3): e14023, 2023 11.
Article in English | MEDLINE | ID: mdl-37553856

ABSTRACT

AIM: In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. METHODS: For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. RESULTS: Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. CONCLUSION: Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Vascular Diseases , Mice , Male , Animals , AMP-Activated Protein Kinases/metabolism , Up-Regulation , Obesity/metabolism , Signal Transduction , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
Biofactors ; 49(6): 1106-1120, 2023.
Article in English | MEDLINE | ID: mdl-37286331

ABSTRACT

The angiotensin II type 2 receptor (AT2R) exerts vasorelaxant, anti-inflammatory, and antioxidant properties. In obesity, its activation counterbalances the adverse cardiovascular effects of angiotensin II mediated by the AT1R. Preliminary results indicate that it also promotes brown adipocyte differentiation in vitro. Our hypothesis is that AT2R activation could increase BAT mass and activity in obesity. Five-week-old male C57BL/6J mice were fed a standard or a high-fat (HF) diet for 6 weeks. Half of the animals were treated with compound 21 (C21), a selective AT2R agonist, (1 mg/kg/day) in the drinking water. Electron transport chain (ETC), oxidative phosphorylation, and UCP1 proteins were measured in the interscapular BAT (iBAT) and thoracic perivascular adipose tissue (tPVAT) as well as inflammatory and oxidative parameters. Differentiation and oxygen consumption rate (OCR) in the presence of C21 was tested in brown preadipocytes. In vitro, C21-differentiated brown adipocytes showed an AT2R-dependent increase of differentiation markers (Ucp1, Cidea, Pparg) and increased basal and H+ leak-linked OCR. In vivo, HF-C21 mice showed increased iBAT mass compared to HF animals. Both their iBAT and tPVAT showed higher protein levels of the ETC protein complexes and UCP1, together with a reduction of inflammatory and oxidative markers. The activation of the AT2R increases BAT mass, mitochondrial activity, and reduces markers of tissue inflammation and oxidative stress in obesity. Therefore, insulin reduction and better vascular responses are achieved. Thus, the activation of the protective arm of the renin-angiotensin system arises as a promising tool in the treatment of obesity.


Subject(s)
Adipose Tissue, Brown , Receptor, Angiotensin, Type 2 , Animals , Male , Mice , Adipocytes, Brown , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613483

ABSTRACT

Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I-III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Stiffness , Animals , Rats , Bone Morphogenetic Protein 7 , Kidney , Pulse Wave Analysis , Rats, Wistar , Renal Insufficiency, Chronic/complications
SELECTION OF CITATIONS
SEARCH DETAIL