Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 239: 123108, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34863061

ABSTRACT

Supramolecular solvents (SUPRASs) are gaining momentum in the multi-residue analysis of liquid samples thanks to the delimited hydrophilic and hydrophobic microenvironments in their nanostructures. In this work, SUPRASs with increased hydrophilicity were synthesized with the aim of enhancing the extractability of polar compounds. For this purpose, a double-headed amphiphile, 1,2-decanediol, was self-assembled in hydro-organic media in the presence and absence of sodium chloride. The SUPRASs formed, characterized by scanning electron microscopy, consisted of sponge droplets made up of a highly convoluted three-dimensional (3D) network of amphiphile. The network contained interconnected bilayers that were intersected by similarly interconnected aqueous channels with high and nearly constant water content (∼30%, w/w). Both the inherently open structure of the sponge morphology and the increased hydrophilic-hydrophobic balance of the amphiphile, provided highly hydrophilic microenvironments into the aggregates that rendered in increased recovery factors for 15 perfluorinated compounds (PFCs, C4-C18, log Pow values from 0.4 to 11.6) in natural waters. Extraction took 15 min without further clean-up or evaporation of extracts which were readily compatible with LC-MS/MS quantitation. Absolute recoveries for PFCs, at the level of a few ng L-1, were in the range 70-120%, except for perfluoropentanoic acid (40%) and perfluorobutane sulfonic acid (51%). Detection limits for PFCs in water were in the range 0.01-0.02 ng L-1, which allowed their determination in slightly polluted waters (0.07-2.33 ng L-1). This work proves that hydrophilicity in SUPRASs can be tailored through the amphiphile and the morphology of their aggregates, and that this characteristic improves compound extractability in multi-residue analysis.


Subject(s)
Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions , Solvents
2.
Food Chem ; 326: 126987, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32416421

ABSTRACT

A single-step sample treatment, for the simultaneous extraction and clean-up for the determination of ionophore coccidiostats in EU legislated foodstuffs, is here proposed. The treatment is based on the combination of: (i) a supramolecular solvent with restricted access properties (SUPRAS-RAM), spontaneously formed by the addition of hexanol, water and THF to the sample; and (ii) dispersive solid phase extraction (dSPE). The SUPRAS-RAM extract was directly compatible with LC-MS/MS and no further re-extraction, evaporation or cleanup procedures were necessary. SUPRAS-RAM efficiently extracted the ionophores (recoveries in milk, eggs, fat, liver, kidney, and chicken and beef muscle were in the range 71-112%) and removed proteins and carbohydrates, whereas dSPE removed fats and other lipophilic compounds. The method was validated following the European Commission Decision 2002/657/EC. Detection limits (0.004-0.07 µg kg-1) were far below the maximum residue limits (1-150 µg kg-1). Method analytical and operational characteristics were suitable for routine determination of ionophores.


Subject(s)
Coccidiostats/analysis , Food Analysis/methods , Solvents/chemistry , Animals , Chromatography, High Pressure Liquid , Coccidiostats/isolation & purification , Eggs/analysis , Ionophores/analysis , Ionophores/isolation & purification , Limit of Detection , Meat/analysis , Milk/chemistry , Solid Phase Extraction , Tandem Mass Spectrometry
3.
Transplant Proc ; 51(1): 20-24, 2019.
Article in English | MEDLINE | ID: mdl-30655130

ABSTRACT

BACKGROUND: Ex vivo machine perfusion (MP) has been reported as a possibly method to rescue discarded organs. The main aim of this study was to report an initial experience in Spain using MP for the rescue of severely marginal discarded liver grafts, and to, secondarily, define markers of viability to test the potential applicability of these devices for the real increase in the organ donor pool. METHODS: The study began in January 2016. Discarded grafts were included in a research protocol that consisted of standard retrieval followed by 10 hours of cold ischemia. Next, either normothermic (NMP) or controlled subnormothermic (subNMP) rewarming was chosen randomly. Continuous measurements of portal-arterial pressure and resistance were screened. Lactate, pH, and bicarbonate were measured every 30 minutes. The perfusion period was 6 hours, after which the graft was discarded and evaluated as potentially usable, but never implanted. Biopsies of the donor and at 2, 4, and 6 hours after ex vivo MP were obtained. RESULTS: A total of 4 grafts were included in the protocol. The first 2 grafts were perfused by NMP and grafts 3 and 4 by subNMP. The second and third grafts showed a clear trend toward optimal recovery and may have been used. Lactate dropped to levels below 2.5 mmol/L with stable arterial and portal pressure and resistance. Clear biliary output started during MP. Biopsies showed an improvement of liver architecture with reduced inflammation at the end of the perfusion. CONCLUSION: This preliminary experience has demonstrated the potential of MP devices for the rescue of severely marginal liver grafts. Lactate and biliary output were useful for viability testing of the grafts. The utility of NMP or subNMP protocols requires further research.


Subject(s)
Liver Transplantation/methods , Organ Preservation/methods , Perfusion/methods , Tissue Donors/supply & distribution , Transplants , Cold Ischemia/methods , Extracorporeal Circulation/methods , Humans , Rewarming/methods , Spain , Transplants/pathology
SELECTION OF CITATIONS
SEARCH DETAIL