Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Front Cell Infect Microbiol ; 14: 1362765, 2024.
Article in English | MEDLINE | ID: mdl-38562963

ABSTRACT

Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1ß, IL-6, IL-12p40, IFN-ß) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.


Subject(s)
Echinococcus granulosus , Humans , Animals , Mice , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Macrophage Activation , Lipoproteins/genetics , Lipoproteins/metabolism , Macrophages , Cytokines/metabolism
2.
Front Immunol ; 14: 1220477, 2023.
Article in English | MEDLINE | ID: mdl-37497229

ABSTRACT

Antigen tests have been crucial for managing the COVID-19 pandemic by identifying individuals infected with SARS-CoV-2. This remains true even after immunity has been widely attained through natural infection and vaccination, since it only provides moderate protection against transmission and is highly permeable to the emergence of new virus variants. For this reason, the widespread availability of diagnostic methods is essential for health systems to manage outbreaks effectively. In this work, we generated nanobodies to the virus nucleocapsid protein (NP) and after an affinity-guided selection identified a nanobody pair that allowed the detection of NP at sub-ng/mL levels in a colorimetric two-site ELISA, demonstrating high diagnostic value with clinical samples. We further modified the assay by using a nanobody-NanoLuc luciferase chimeric tracer, resulting in increased sensitivity (detection limit = 61 pg/mL) and remarkable improvement in diagnostic performance. The luminescent assay was finally evaluated using 115 nasopharyngeal swab samples. Receiver Operating Characteristic (ROC) curve analysis revealed a sensitivity of 78.7% (95% confidence interval: 64.3%-89.3%) and specificity of 100.0% (95% confidence interval: 94.7%-100.0%). The test allows the parallel analysis of a large number of untreated samples, and fulfills our goal of producing a recombinant reagent-based test that can be reproduced at low cost by other laboratories with recombinant expression capabilities, aiding to build diagnostic capacity.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Indicators and Reagents , Pandemics , Antibodies, Viral , Immunoassay/methods , Nucleocapsid Proteins
3.
Cancer Lett ; 561: 216139, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37001752

ABSTRACT

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Subject(s)
Neoplasms , Single-Domain Antibodies , Animals , Humans , Mice , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes , Semliki forest virus/genetics , Single-Domain Antibodies/genetics , Programmed Cell Death 1 Receptor/metabolism
4.
Toxins (Basel) ; 15(2)2023 01 17.
Article in English | MEDLINE | ID: mdl-36828400

ABSTRACT

The development of simple, reliable, and cost-effective methods is critically important to study the spatial and temporal variation of microcystins (MCs) in the food chain. Nanobodies (Nbs), antigen binding fragments from camelid antibodies, present valuable features for analytical applications. Their small antigen binding site offers a focused recognition of small analytes, reducing spurious cross-reactivity and matrix effects. A high affinity and broad cross-reactivity anti-MCs-Nb, from a llama antibody library, was validated in enzyme linked immunosorbent assay (ELISA), and bound to magnetic particles with an internal standard for pre-concentration in quantitative-matrix-assisted laser desorption ionization-time of flight mass spectrometry (Nb-QMALDI MS). Both methods are easy and fast; ELISA provides a global result, while Nb-QMALDI MS allows for the quantification of individual congeners and showed excellent performance in the fish muscle extracts. The ELISA assay range was 1.8-29 ng/g and for Nb-QMALDI, it was 0.29-29 ng/g fish ww. Fifty-five fish from a MC-containing dam were analyzed by both methods. The correlation ELISA/sum of the MC congeners by Nb-QMALDI-MS was very high (r Spearman = 0.9645, p < 0.0001). Using ROC curves, ELISA cut-off limits were defined to accurately predict the sum of MCs by Nb-QMALDI-MS (100% sensitivity; ≥89% specificity). Both methods were shown to be simple and efficient for screening MCs in fish muscle to prioritize samples for confirmatory methods.


Subject(s)
Microcystins , Single-Domain Antibodies , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Microcystins/analysis , Enzyme-Linked Immunosorbent Assay
5.
Trop Med Infect Dis ; 8(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36668962

ABSTRACT

Zika virus has spread around the world with rapid pace in the last five years. Although symptoms are typically mild and unspecific, Zika's major impact occurs during pregnancy, generating a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due to the uncertainty caused by the cross-reaction of antibodies elicited in response to other flavivirus infections when tested in direct immunoassays. Using a panel of previously generated anti-Zika non-structural protein 1 (NS1) nanobodies, a set was selected that only recognizes epitopes present in Zika and is immunogenic to humans. A proper arrangement of these nanobodies was made and conditions were optimized in order to develop a novel serology assay. This new ELISA relies on the inhibition of the binding of a set of selected nanobodies to Zika-immobilized NS1 when previously incubated with Zika convalescent sera. Using the developed blocking of binding assay, it was possible to discriminate between Zika-specific and cross-reactive antibodies in serum samples from infections with Zika and other flaviviruses.

6.
Anal Chim Acta ; 1214: 339940, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35649639

ABSTRACT

Penicillin is one of the most widely used antibiotics to treat bacterial infections in clinical practice. The antibiotic undergoes degradation under physiological conditions to produce reactive compounds that in vivo bind self-proteins. These conjugates might elicit an immune response and trigger allergic reactions challenging to diagnose due to the complex immunogenicity. Penicillin allergy delabeling initiatives are now part of antibiotic stewardship programs and include the use of invasive and risky in vivo tests. Instead, the in vitro quantification of specific IgE is highly useful to confirm immediate allergy to penicillins. However, discrepant results associated with the low sensitivity and accuracy of penicillin allergy in vitro tests have limited their routine diagnostic use for delabeling purposes. We aimed to develop a homologous chemiluminescence-based immunochemical method for the reliable determination of specific IgE to penicillin G, using unprecedented synthetic human-like standards. The synthetic standard targets the major antigenic determinant of penicillin G and the paratope of Omalizumab, acting as human-like specific IgE. It is a potent calibrator, highly stable, easy, and inexpensive to produce, overcoming the limitations of the pooled human serum preparations. The developed method achieved a good agreement and strong positive relationship, reaching a detection limit below 0.1 IU mL-1 and excellent reproducibility (RSD <9%). The clinical sensitivity of the assay significantly increased (66%), doubling the accuracy of the reference method with an overall specificity of 100%. The new diagnostic strategy compares favorably with results obtained by the standard procedure, paving the way towards the standardization of penicillin allergy testing, and enhancing the detection sensitivity of specific IgE in serum to tackle reliably ß-lactam allergy delabeling.


Subject(s)
Drug Hypersensitivity , Luminescence , Anti-Bacterial Agents , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/drug therapy , Humans , Immunoassay , Immunoglobulin E , Penicillins , Reproducibility of Results
7.
Anal Chem ; 94(20): 7358-7367, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35536756

ABSTRACT

The self-calibration capability of ratiometric signals has been widely considered to enhance the accuracy, sensitivity, and anti-interference ability of immunoassays. Exploring a new approach to generate ratiometric signals can provide more options for various requirements. Herein, we integrated the negative-readout competitive and positive-readout noncompetitive immunoassays into a single assay by employing different color tracers, labeled peptidomimetic and anti-immunocomplex peptides, to create a new unconstrained ratiometric signal approach. Using an immunochromatographic strip (ICS) and a fungicide benzothiostrobin as the analytical platform and analyte, respectively, we showed that this approach can be extensively applied to fluorescence and colorimetry readouts, which have also been proven for strong anti-interference ability to an external light environment. Moreover, the enormous intuitional color changes of ratiometric fluorescent and colorimetric ICSs (RFICS and RCICS) enabled the formation of the color reference cards (like the pH paper) for visual judgment. After adaptation with a portable smartphone, the quantitative detection limits for RFICS and RCICS were 0.17 and 0.44 ng mL-1, respectively. In addition, the ICSs showed good accuracy for the detection of benzothiostrobin in spiked samples.


Subject(s)
Colorimetry , Peptides , Chromatography, Affinity , Immunoassay/methods , Limit of Detection , Peptides/chemistry , Smartphone
8.
Anal Chim Acta ; 1203: 339705, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35361433

ABSTRACT

Salmonella are major pathogens that cause foodborne diseases. In this work, a broad-spectrum Salmonella nanobody-01 (Nb-01) was isolated and applied in the development of a streptavidin-bridged sandwich ELISA (SAB-ELISA) for simultaneously identifying five Salmonella serovars, including Salmonella Enteritidis (S. Enteritidis), Salmonella Typhimurium (S. Typhimurium), Salmonella London (S. London), Salmonella Paratyphi B (S. Paratyphi B) and Salmonella Hadar (S. Hadar). In this work, streptavidin (SA) was utilized as a scaffold to directionally immobilize biotinylated nanobody (BiNb) and Salmonella was detected by phage-displayed nanobodies. The SAB-ELISA can be accomplished within 180 min with a limit of detection (LOD) of 6.31 × 103 colony forming units (CFU) mL-1, 9.15 × 103 CFU mL-1, 4.23 × 103 CFU mL-1, 7.31 × 103 CFU mL-1 and 7.25 × 103 CFU mL-1 towards S. Typhimurium, S. Enteritidis, S. London, S. Paratyphi B and S. Hadar, respectively. In comparison of sandwich ELISA by passive immobilization of Nb-01 on polystyrene plate, the sensitivity was increased by around 6-fold, which confirmed the enhanced immobilization efficacy of SAB-ELISA. Furthermore, the feasibility of the assay for S. Typhimurium determination in actual samples was evaluated, showing excellent recovery, inter-day and intra-day precision.


Subject(s)
Single-Domain Antibodies , Enzyme-Linked Immunosorbent Assay , Salmonella enteritidis , Serogroup , Streptavidin
9.
Methods Mol Biol ; 2446: 531-546, 2022.
Article in English | MEDLINE | ID: mdl-35157292

ABSTRACT

Over the last two decades, the variable domains from heavy chain-only antibodies in camelids (nanobodies) have emerged as valuable immunoreagents for analytical and diagnostic applications. One prominent use of nanobodies is for the detection of small molecules due to their ease of production, resistance to solvents used in sample extraction, facile genetic manipulation, and small size. These last two properties make it possible to produce biotinylated nanobodies in vivo, which can be loaded in an orientated manner on magnetic beads covered with avidin, creating high-density immunoadsorbenpi twbch ""ts. The method described here details the use of nanobody-based adsorbents to concentrate small molecular weight analytes for subsequent quantitative analysis by MALDI-TOF mass spectrometry. Quantitation requires the inclusion of an internal standard (IS), a compound with properties similar to those of the analyte, enabling compensation for uneven distribution during crystallization of the MALDI-TOF matrix. Since nanobody generation against small compounds requires conjugation to carrier proteins, the same conjugation chemistry can be used to synthesize the IS. By design the IS cross reacts with the capture nanobody and can be preloaded in the immunoadsorbent, facilitating quantitative detection of the target compound.


Subject(s)
Single-Domain Antibodies , Immunoglobulin Heavy Chains , Immunomagnetic Separation , Magnetic Phenomena , Single-Domain Antibodies/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
Biosens Bioelectron ; 201: 113968, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35007993

ABSTRACT

Immunoassays are commonly used methods for detection of small molecules that typically require numerous steps of the labeling between immune-recognition reagents and tracers, immobilization and recurrent washing, making them time consuming and difficult to adapt into point of care formats. Here we describe a "ready-to-use" homogeneous competitive immunosensor with an assay time of 10 min that is based exclusively on recombinant reagents. The signal is produced when the split fragments of the nano luciferase (Nluc) are brought together by the interaction of a heavy chain only variable domain (VHH) with a peptidomimetic of the target small molecule. A VHH to 2,4-dichlorophenoxyacetic acid (2,4-D) was used to isolated the peptidomimetic (NGFFEPWQVVYV) from phage display libraries using six panning conditions. Then the peptidomimetic and VHH were fused with the larger (LgN) and smaller piece (SmN) of split fragments of Nluc, respectively. In order to optimize the signal and sensitivity of the immunosensor, we explored the effects of the spacer between the peptidomimetic and LgN, the copy number of peptidomimetics, and the spacer between SmN and VHH, generating 24 combinations that allowed to conclude on their respective roles. Eventually, the developed "ready-to-use" immunosensor performed excellent signal-to-noise ratio and sensitivity, and could be applied to the detection of 2,4-D in real samples. Meanwhile, the immunosensor totally realizes labeling-free, immobilization-free and washing-free, also can be produced in a highly cost effective way.


Subject(s)
Biosensing Techniques , Peptidomimetics , Immunoassay , Luciferases , Point-of-Care Systems
11.
Anal Chem ; 94(2): 1342-1349, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34931798

ABSTRACT

Commonly, serological immunoassays and diagnostic kits include reference standard reagents (calibrators) that contain specific antibodies to be measured, which are used for the quantification of unknown antibodies present in the sample. However, in some cases, such as the diagnosis of allergies or autoimmune diseases, it is often difficult to have sufficient quantities of these reference standards, and there are limitations to their lot-to-lot reproducibility and standardization over time. To overcome this difficulty, this study introduces the use of surrogate recombinant calibrators formulated on the basis of two single-domain antibodies (nanobodies) combined through a short peptide linker to produce a recombinant bispecific construct. One of the nanobodies binds to the cognate analyte of the target antibody and the second is specific for the paratope of the secondary detecting antibody. The bispecific nanobody inherits the outstanding properties of stability and low-cost production by bacterial fermentation of the parent nanobodies, and once calibrated against the biological reference standard, it can be reproduced indefinitely from its sequence in a highly standardized manner. As a proof of concept, we present the generation and characterization of two bispecific calibrators with potential application for the diagnosis of allergy against the antibiotics aztreonam and amoxicillin in humans.


Subject(s)
Antibodies, Bispecific , Single-Domain Antibodies , Antibodies , Antibodies, Bispecific/chemistry , Humans , Immunoassay , Immunologic Tests , Reproducibility of Results
12.
Anal Chem ; 93(34): 11800-11808, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34415158

ABSTRACT

Phage-borne peptides and antibody fragments isolated from phage display libraries have proven to be versatile and valuable reagents for immunoassay development. Due to the lack of convenient and mild-condition methods for the labeling of the phage particles, isolated peptide/protein affinity ligands are commonly removed from the viral particles and conjugated to protein tracers or nanoparticles for analytical use. This abolishes the advantage of isolating ready-to-use affinity binders and creates the risk of affecting the polypeptide activity. To circumvent this problem, we optimized the phage display system to produce phage particles that express the affinity binder on pIII and a polyglycine short peptide fused to pVIII that allows the covalent attachment of tracer molecules employing sortase A. Using a llama heavy chain only variable domain (VHH) against the herbicide 2,4-D on pIII as the model, we showed that the phage can be extensively decorated with a rhodamine-LPETGG peptide conjugate or the protein nanoluciferase (Nluc) equipped with a C-terminal LPETGG peptide. The maximum labeling amounts of rhodamine-LPETGG and Nluc-LPETGG were 1238 ± 63 and 102 ± 16 per phage, respectively. The Nluc-labeled dual display phage was employed to develop a phage bioluminescent immunoassay (P-BLEIA) for the detection of 2,4-D. The limit of detection and 50% inhibition concentration of P-BLEIA were 0.491 and 2.15 ng mL-1, respectively, which represent 16-fold and 8-fold improvement compared to the phage enzyme-linked immunosorbent assay. In addition, the P-BLEIA showed good accuracy for the detection of 2,4-D in spiked samples.


Subject(s)
Bacteriophages , Enzyme-Linked Immunosorbent Assay , Immunoassay , Immunoglobulin Fragments , Peptide Library
13.
Nat Biomed Eng ; 5(11): 1389-1401, 2021 11.
Article in English | MEDLINE | ID: mdl-34127819

ABSTRACT

The association of autoimmune diseases with particular allellic products of the class-II major histocompatibility complex (MHCII) region implicates the presentation of the offending self-antigens to T cells. Because antigen-presenting cells are tolerogenic when they encounter an antigen under non-inflammatory conditions, the manipulation of antigen presentation may induce antigen-specific tolerance. Here, we show that, in mouse models of experimental autoimmune encephalomyelitis, type 1 diabetes and rheumatoid arthritis, the systemic administration of a single dose of nanobodies that recognize MHCII molecules and conjugated to the relevant self-antigen under non-inflammatory conditions confers long-lasting protection against these diseases. Moreover, co-administration of a nanobody-antigen adduct and the glucocorticoid dexamethasone, conjugated to the nanobody via a cleavable linker, halted the progression of established experimental autoimmune encephalomyelitis in symptomatic mice and alleviated their symptoms. This approach may represent a means of treating autoimmune conditions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Immune Tolerance , Animals , Autoantigens , Histocompatibility , Major Histocompatibility Complex , Mice
14.
N Biotechnol ; 64: 9-16, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-33984500

ABSTRACT

Nanobodies are the smallest antibody fragments which bind to antigens with high affinity and specificity. Due to their outstanding physicochemical stability, simplicity and cost-effective production, nanobodies have become powerful agents in therapeutic and diagnostic applications. In this work, the advantages of nanobodies were exploited to develop generic and standardized anti-human IgM reagents for serology and IgM+ B-cell analysis. Selection of anti-IgM nanobodies was carried out by evaluating their yields, stability, binding kinetics and cross-reactivity with other Ig isotypes. High affinity nanobodies were selected with dissociation constants (KDs) in the nM range and high sensitivities for detection of total IgM by ELISA. The nanobodies also proved to be useful for capturing IgM in the serodiagnosis of an acute infection as demonstrated by detection of specific IgM in sera of dengue virus patients. Finally, due to the lack of an Fc region, the selected nanobodies do not require Fc receptor blocking steps, facilitating the immunophenotyping of IgM+ cells by flow cytometry, an important means of diagnosis of immunodeficiencies and B-cell lymphoproliferative disorders. This work describes versatile anti-IgM nanobodies that, due to their recombinant nature and ease of reproduction at low cost, may represent an advantageous alternative to conventional anti-IgM antibodies in research and diagnosis.


Subject(s)
Antibodies, Anti-Idiotypic , Indicators and Reagents , Single-Domain Antibodies , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin M
15.
Biomolecules ; 10(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317184

ABSTRACT

The Zika virus was introduced in Brazil in 2015 and, shortly after, spread all over the Americas. Nowadays, it remains present in more than 80 countries and represents a major threat due to some singularities among other flaviviruses. Due to its easy transmission, high percentage of silent cases, the severity of its associated complications, and the lack of prophylactic methods and effective treatments, it is essential to develop reliable and rapid diagnostic tests for early containment of the infection. Nonstructural protein 1 (NS1), a glycoprotein involved in all flavivirus infections, is secreted since the beginning of the infection into the blood stream and has proven to be a valuable biomarker for the early diagnosis of other flaviviral infections. Here, we describe the development of a highly sensitive nanobody ELISA for the detection of the NS1 protein in serum samples. Nanobodies were selected from a library generated from a llama immunized with Zika NS1 (ZVNS1) by a two-step high-throughput screening geared to identify the most sensitive and specific nanobody pairs. The assay was performed with a sub-ng/mL detection limit in the sera and showed excellent reproducibility and accuracy when validated with serum samples spiked with 0.80, 1.60, or 3.10 ng/mL of ZVNS1. Furthermore, the specificity of the developed ELISA was demonstrated using a panel of flavivirus' NS1 proteins; this is of extreme relevance in countries endemic for more than one flavivirus. Considering that the nanobody sequences are provided, the assay can be reproduced in any laboratory at low cost, which may help to strengthen the diagnostic capacity of the disease even in low-resource countries.


Subject(s)
Antibodies, Viral/chemistry , Enzyme-Linked Immunosorbent Assay/standards , Single-Domain Antibodies/chemistry , Viral Nonstructural Proteins/blood , Zika Virus Infection/diagnosis , Zika Virus/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/isolation & purification , Camelids, New World , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Humans , Limit of Detection , Peptide Library , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/isolation & purification , Uruguay , Zika Virus Infection/blood , Zika Virus Infection/immunology , Zika Virus Infection/virology
16.
Biomedicines ; 8(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276580

ABSTRACT

Immune checkpoint blockade using monoclonal antibodies (mAbs) able to block programmed death-1 (PD-1)/PD-L1 axis represents a promising treatment for cancer. However, it requires repetitive systemic administration of high mAbs doses, often leading to adverse effects. We generated a novel nanobody against PD-1 (Nb11) able to block PD-1/PD-L1 interaction for both mouse and human molecules. Nb11 was cloned into an adeno-associated virus (AAV) vector downstream of four different promoters (CMV, CAG, EF1α, and SFFV) and its expression was analyzed in cells from rodent (BHK) and human origin (Huh-7). Nb11 was expressed at high levels in vitro reaching 2-20 micrograms/mL with all promoters, except SFFV, which showed lower levels. Nb11 in vivo expression was evaluated in C57BL/6 mice after intravenous administration of AAV8 vectors. Nb11 serum levels increased steadily along time, reaching 1-3 microgram/mL two months post-treatment with the vector having the CAG promoter (AAV-CAG-Nb11), without evidence of toxicity. To test the antitumor potential of this vector, mice that received AAV-CAG-Nb11, or saline as control, were challenged with colon adenocarcinoma cells (MC38). AAV-CAG-Nb11 treatment prevented tumor formation in 30% of mice, significantly increasing survival. These data suggest that continuous expression of immunomodulatory nanobodies from long-term expression vectors could have antitumor effects with low toxicity.

17.
PLoS One ; 15(3): e0221837, 2020.
Article in English | MEDLINE | ID: mdl-32126063

ABSTRACT

Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Proteome , Proteomics/methods , Antigens, Bacterial/metabolism , Bacterial Secretion Systems/metabolism , Bacterial Vaccines , Cell Wall , Chromatography, Liquid , Glycosylation , Host-Pathogen Interactions , Membrane Proteins/metabolism , Tandem Mass Spectrometry , Tuberculosis/microbiology , Virulence , Virulence Factors/metabolism
18.
Anal Bioanal Chem ; 412(2): 389-396, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31760451

ABSTRACT

Colon cancer has a high prevalence worldwide and is a serious public health problem. Early diagnosis greatly improves its prognosis and, among the existing methods, the detection of fecal occult blood is the only noninvasive test recommended for screening of the disease. To promote its massive application as a screening tool for asymptomatic populations in low-resource settings, the availability of a reliable and cost-effective method is imperative. Here, we describe the development and validation of a sensitive nanobody-based immunoassay for the detection of hemoglobin in human fecal samples. The nanobodies were selected from a library generated from a llama immunized with human hemoglobin, using a high-throughput platform that enabled the identification of the best nanobody pair. The assay allowed a sub-ng/mL limit of detection to be reached in phosphate-buffered saline, and was validated with stool samples, showing excellent reproducibility (CV% < 15 inter-day precision) and accuracy at 2 and 4 µg of hemoglobin per gram of feces, which are well below the recommended cutoff for this test (10-20 µg/g). Moreover, no cross-reactivity was observed with a panel of dietary non-human hemoglobins removing the need for pre-test dietary restrictions. Considering that the monodomain nature of nanobodies facilitates their straightforward and low-cost production by bacterial fermentation, with their provided sequences and using synthetic genes, the assay reported here could be replicated in any laboratory to perform thousands of tests for early detection of colorectal cancer at almost no cost. Graphical abstract.


Subject(s)
Feces/chemistry , Hemoglobins/analysis , Single-Domain Antibodies , Animals , Camelids, New World , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Hemoglobins/immunology , Humans , Limit of Detection
19.
ACS Appl Mater Interfaces ; 11(36): 33380-33389, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31433617

ABSTRACT

Peptides isolated from phage display libraries are powerful reagents for small-molecule immunoassay; however, their application as phage-borne peptides is significantly limited by the biological nature of the phage. Here, we present the use of lysine scaffold to prepare a series of different valence peptides to serve as replacements for phage-borne peptides. Benzothiostrobin was selected as a model analyte, the cyclic benzothiostrobin-peptidomimetic in the form of monomer, dendrimer-like dimer, and tetramer were designed and synthesized. Compared with the monomer, the affinity of dendrimer-like dimer and tetramer increased 1.87 and 13.6 times, respectively, as determined by isothermal titration calorimetry (ITC). A novel inner filter effect immunoassay (IFE-IA) with positive readout was developed for benzothiostrobin detection utilizing the peptidomimetics attached to upconversion nanoparticles (UCNPs) as energy donor and monoclonal antibody (mAb)-labeled urchin-like gold nanoflowers (AuNFs) as energy absorber, respectively. The sensitivity of the assay based on dendrimer-like tetramer was approximately 6 and 3 times higher than monomer and dendrimer-like dimer, respectively. After optimization, 50% saturation of the signal (SC50) and detection range (SC10 to SC90) of the IFE-IA based on dendrimer-like tetramer were 11.81 ng mL-1 and 2.04-106.17 ng mL-1, respectively. The IFE-IA also shows good accuracy for the detection of benzothiostrobin in authentic samples.


Subject(s)
Dendrimers/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Acrylates/chemistry , Amino Acid Sequence , Antibodies, Monoclonal/metabolism , Antibody Affinity , Benzothiazoles/chemistry , Gold/chemistry , Immunoassay , Metal Nanoparticles/ultrastructure , Peptidomimetics , Reproducibility of Results , Spectrometry, Fluorescence
20.
Anal Chem ; 91(15): 9925-9931, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31291093

ABSTRACT

Here we present a new analytical method where immunoconcentration of the analyte is coupled to quantitative matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) analysis allowing in minutes the identification and highly sensitive quantitation of microcystins (MCs) as model targets. The key element is a site-specific in vivo biotinylated nanobody of broad cross-reactivity with microcystins. The single biotin moiety at the C-terminus and the small size of the nanobody (15 kDa) enable its oriented and tightly packed immobilization on magnetic beads, providing a highly efficient capture of the toxin. The binding capacity of the bioadsorbent is partially loaded with an easily synthesized internal standard for MS quantitation. After capture, the beads are directly dispensed on the MALDI-TOF MS target enabling the identification and sensitive quantitation of the microcystin (MC) congeners. Since salts and contaminants are removed during the concentration step, no cleanup or other sample treatments are needed. The method was validated with a large number of water and serum samples with excellent precision and recovery at quantitation limits of 0.025 µg/L of MC.


Subject(s)
Microcystins/analysis , Single-Domain Antibodies/immunology , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Biotinylation , Cattle , Humans , Immunomagnetic Separation , Kinetics , Limit of Detection , Microcystins/blood , Microcystins/immunology , Microcystins/standards , Reference Standards , Single-Domain Antibodies/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...