Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067479

ABSTRACT

Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.


Subject(s)
Anthocyanins , Polyphenols , Flavonoids , Plant Extracts/chemistry , Solvents/chemistry
2.
Molecules ; 27(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684493

ABSTRACT

In this study, conditions for the ultrasound-assisted extraction (UAE) of soluble polyphenols from Psidium cattleianum (PC) leaves were optimized using response surface methodology (RSM) by assessing the effect of extraction time (XET = 2, 4, and 6 min), sonication amplitude (XSA = 60, 80, and 100%), and pulse cycle (XPC = 0.4, 0.7, and 1 s). Furthermore, the optimized UAE conditions were compared with a conventional aqueous-organic extraction (AOE) method for extracting total phenolics; moreover, a phenolic profile using HPLC and antioxidant activity (DPPH, ABTS, and FRAP) were also compared. According to the RSM, the best conditions for UAE to extract the highest soluble polyphenol content and yield (158.18 mg/g dry matter [DM] and 15.81%) include a 100% sonication amplitude for 4 min at 0.6 s of pulse cycle. The optimal UAE conditions exhibited an effectiveness of 1.71 times in comparison to the AOE method for extracting total phenolics, in 96.66% less time; moreover, PC leaf extracts by UAE showed higher antioxidant values than AOE. Additionally, gallic, protocateic, chlorogenic, caffeic, coumaric, trans-cinnamic, 4-hydroxybenzoic, and syringic acids, as well as kaempferol were identified in PC leaves under UAE. PC leaf extracts are widely used for therapeutic and other industrial purposes; thus, the UAE proves to be a useful technology with which to improve the yield extraction of PC leaf phytochemicals.


Subject(s)
Psidium , Antioxidants , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols
3.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35455462

ABSTRACT

Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design.

4.
J Nanosci Nanotechnol ; 21(11): 5383-5398, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33980348

ABSTRACT

Antimicrobial resistance has become a severe problem for health systems worldwide, and counteractions are challenging because of the lack of interest of pharmaceutical companies in generating new and effective antimicrobial drugs. Selenium nanoparticles have attracted considerable interest in treating bacteria, fungi, parasites, and viruses of clinical importance due to their high therapeutic efficacy and almost zero generation of adverse effects. Some studies have revealed that the antimicrobial activity of these nanoparticles is due to the generation of reactive oxygen species, but more studies are needed to clarify their antimicrobial mechanisms. Other studies show that their antimicrobial activity is increased when the surface of the nanoparticles is functionalized with some biomolecules or when their surface carries a specific drug. This review addresses the existing background on the antimicrobial potential offered by selenium nanoparticles against viruses, bacteria, fungi, and parasites of clinical importance.


Subject(s)
Anti-Infective Agents , Nanoparticles , Pharmaceutical Preparations , Selenium , Anti-Infective Agents/pharmacology , Fungi
5.
Article in English | MEDLINE | ID: mdl-35010709

ABSTRACT

The purpose of this study was to analyze the association between components of the diet, metabolic risks, and the serum concentrations of adiponectin and interleukin-6 (IL-6). With prior informed consent, an analytical cross-sectional study was carried out with 72 students in their first year of university. The subjects had a mean age of 19.2 ± 1.0 years and body mass index of 23.38 ± 4.2, and they were mainly women (80.6%). Sociodemographic, anthropometric, and dietary data and metabolic risk factors were evaluated, and biochemical parameters and adipocytokines were also considered. The data were analyzed using means, ranges, and correlations, as well as principal components. In general, the protein, fat, and sodium intake were higher than the international dietary recommendations, and deficiencies in vitamins B5 and E, potassium, phosphorus, selenium, and zinc were observed. The most frequently observed metabolic risks were insulin resistance and hypoalphalipoproteinemia. IL-6 was positively correlated with lipid and protein intake. Adiponectin showed a positive correlation with high-density lipoprotein and a negative correlation with insulin, weight, and waist, while the adiponectin pattern was similar to that of vitamins E and A, which decreased with increasing intake of calories, macronutrients, and sodium. In general, a hypercaloric diet that was high in protein, fat, and sodium and deficient in vitamins, mainly fat-soluble, was associated with a lower concentration of adiponectin and a higher concentration of IL-6, which favor the presence of metabolic risks, including insulin resistance. Intervention studies are required to evaluate the dietary intake of metabolic markers in young people without comorbidities, which will lay the foundation for implementing prevention strategies.


Subject(s)
Energy Intake , Universities , Adiponectin , Adolescent , Adult , Body Mass Index , Cross-Sectional Studies , Female , Humans , Students , Young Adult
6.
Ecol Food Nutr ; 60(3): 324-333, 2021.
Article in English | MEDLINE | ID: mdl-33176493

ABSTRACT

Obesity is the result of a complex combination of psychological, biological, and environmental factors. In this work, we evaluate whether obesity is related to eating habits, depressive symptomatology, as well as interleukin-8 and cortisol. A descriptive cross-sectional study was carried out in 232 university students. All youths were surveyed to determine their eating habits and depressive symptomatology. Anthropometric measures and a blood sample were taken to determine its biochemical profile and its concentration of interleukin-8 and cortisol. The results show that interleukin-8 increase in the overfat group. The altered eating behaviors were frequent in the studied group; they were associated with the presence of obesity and the variation of interleukin-8 and cortisol. Besides, we found correlations of interleukin-8 with age, glucose, and lipid profile in the overfat group. In conclusion, these results indicate that high adiposity is related to changes in the concentrations of interleukin-8 and eating habits, confirming that obesity is the consequence of a complex network of various factors.


Subject(s)
Hydrocortisone , Interleukin-8 , Adolescent , Cross-Sectional Studies , Feeding Behavior , Humans , Obesity/complications
7.
Molecules ; 25(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138341

ABSTRACT

The soursop fruit or Annona muricata (A. muricata) fruit is recognized by its bioactive compounds and acetogenins (ACG) are among the most important. The effect of ACGs, with greater importance in health, is that they present anti-tumor activity; however, the methods of extraction of ACGs are very slow and with a high expenditure of solvents. To our knowledge, there is no report of an optimal method for the extraction of acetogenins from the Annonaceae family by ultrasound-assisted extraction (UAE); therefore, the aim was to find the best UEA conditions of acetogenins from A. muricata fruit (peel, pulp, seed, and columella) by using response surface methodology. The effect of amplitude (40%, 70%, and 100%), time (5, 10, and 15 min), and pulse-cycle (0.4, 0.7, and 1 s) of ultrasound at 24 kHz was evaluated on the total acetogenin content (TAC). Optimal extraction conditions of acetogenins (ACGs) with UEA were compared with the extraction of ACGs by maceration. The optimal UEA conditions in the A. muricata pulp and by-products were dependent on each raw material. The highest TAC was found in the seed (13.01 mg/g dry weight (DW)), followed by the peel (1.69 mg/g DW), the pulp (1.67 mg/g DW), and columella (1.52 mg/g DW). The experimental TAC correlated well with the model (Adjusted R2 with values between 0.88 and 0.97). The highest effectiveness in ACG extraction was obtained in seeds and peels using UEA compared to extraction by maceration (993% and 650%, respectively). The results showed that A. muricata by-products are an important source of ACGs and that UAE could be a viable alternative, with high potential for large-scale extraction.


Subject(s)
Acetogenins/chemistry , Annona/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Ultrasonic Waves
8.
Materials (Basel) ; 13(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053948

ABSTRACT

In recent years, a strong interest has emerged in hybrid composites and their potential uses, especially in chitosan-titanium dioxide (CS-TiO2) composites, which have interesting technological properties and applications. This review describes the reported advantages and limitations of the functionalization of chitosan by adding TiO2 nanoparticles. Their effects on structural, textural, thermal, optical, mechanical, and vapor barrier properties and their biodegradability are also discussed. Evidence shows that the incorporation of TiO2 onto the CS matrix improves all the above properties in a dose-dependent manner. Nonetheless, the CS-TiO2 composite exhibits great potential applications including antimicrobial activity against bacteria and fungi; UV-barrier properties when it is used for packaging and textile purposes; environmental applications for removal of heavy metal ions and degradation of diverse water pollutants; biomedical applications as a wound-healing material, drug delivery system, or by the development of biosensors. Furthermore, no cytotoxic effects of CS-TiO2 have been reported on different cell lines, which supports their use for food and biomedical applications. Moreover, CS-TiO2 has also been used as an anti-corrosive material. However, the development of suitable protocols for CS-TiO2 composite preparation is mandatory for industrial-scale implementation.

9.
Cancers (Basel) ; 11(12)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817789

ABSTRACT

Mangiferin is an important xanthone compound presenting various biological activities. The objective of this study was to develop, characterize physicochemical properties, and evaluate the anti-topoisomerase activity of poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing mangiferin. The nanoparticles were developed by the emulsion solvent evaporation method and the optimal formulation was obtained with a response surface methodology (RSM); this formulation showed a mean size of 176.7 ± 1.021 nm with a 0.153 polydispersibility index (PDI) value, and mangiferin encapsulation efficiency was about 55%. The optimal conditions (6000 rpm, 10 min, and 300 µg of mangiferin) obtained 77% and the highest entrapment efficiency (97%). The in vitro release profile demonstrated a gradual release of mangiferin from 15 to 180 min in acidic conditions (pH 1.5). The fingerprint showed a modification in the maximum absorption wavelength of both the polymer and the mangiferin. Results of anti-toposiomerase assay showed that the optimal formulation (MG4, 25 µg/mL) had antiproliferative activity. High concentrations (2500 µg/mL) of MG4 showed non-in vitro cytotoxic effect on BEAS 2B and HEPG2. Finally, this study showed an encapsulation process with in vitro gastric digestion resistance (1.5 h) and without interfering with the metabolism of healthy cells and their biological activity.

10.
Nanomaterials (Basel) ; 9(7)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295802

ABSTRACT

Mixed oxide nanoparticles (MONs, TiO2-ZnO-MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA-DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480-500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2-ZnO (5%)-MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.

11.
Materials (Basel) ; 12(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818789

ABSTRACT

TiO2-ZnO-MgO mixed oxide nanomaterials (MONs) were synthetized via the sol-gel method and characterized by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), nitrogen physisorption analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR), and color (Luminosity (L), a, b, Chrome, hue) parameters. Furthermore, the antimicrobial activity of the MONs was tested against Escherichia coli (EC), Salmonella paratyphi (SP), Staphylococcus aureus (SA), and Listeria monocytogenes (LM). The MONs presented a semi globular-ovoid shape of ≤100 nm. Samples were classified as mesoporous materials and preserved in the TiO2 anatase phase, with slight changes in the color parameters of the MONs in comparison with pure TiO2. The MONs exhibited antimicrobial activity, and their effect on the tested bacteria was in the following order: EC > SP > SA > LM. Therefore, MONs could be used as antimicrobial agents for industrial applications.

12.
World J Microbiol Biotechnol ; 29(2): 301-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23054703

ABSTRACT

The dynamism of microbial populations in the rumen has been studied with molecular methods that analyze single nucleotide polymorphisms of ribosomal RNA gene fragments (rDNA). Therefore DNA of good quality is needed for this kind of analysis. In this work we report the evaluation of four DNA extraction protocols (mechanical lysis or chemical lysis with CTAB, ethylxanthogenate or DNAzol(®)) from ruminal fluid. The suitability of two of these protocols (mechanical lysis and DNAzol(®)) was tested on single-strand conformation polymorphism (SSCP) of rDNA of rumen microbial populations. DNAzol(®) was a simple method that rendered good integrity, yield and purity. With this method, subtle changes in protozoan populations were detected in young bulls fed with slightly different formulations of a supplement of multinutritional blocks of molasses and urea. Sequences related to Eudiplodinium maggi and a non-cultured Entodiniomorphid similar to Entodinium caudatum, were related to major fluctuating populations in an SSCP assay.


Subject(s)
Analytic Sample Preparation Methods/methods , Bacteria/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/isolation & purification , Rumen/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Cattle , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Male , Molecular Sequence Data , Phylogeny , Polymorphism, Single-Stranded Conformational
13.
Biochemistry ; 50(29): 6396-408, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21707055

ABSTRACT

Burkholderia cenocepacia is an important opportunistic pathogen, and one of the most striking features of the Burkholderia genus is the collection of polar lipids present in its membrane, including phosphatidylethanolamine (PE) and ornithine-containing lipids (OLs), as well as the 2-hydroxylated derivatives of PE and OLs (2-OH-PE and 2-OH-OLs, respectively), which differ from the standard versions by virtue of the presence of a hydroxyl group at C2 (2-OH) of an esterified fatty acyl residue. Similarly, a lipid A-esterified myristoyl group from Salmonella typhimurium can have a 2-hydroxy modification that is due to the LpxO enzyme. We thus postulated that 2-hydroxylation of 2-OH-OLs might be catalyzed by a novel dioxygenase homologue of LpxO. In B. cenocepacia, we have now identified two open reading frames (BCAM1214 and BCAM2401) homologous to LpxO from S. typhimurium. The introduction of bcam2401 (designated olsD) into Sinorhizobium meliloti leads to the formation of one new lipid and in B. cenocepacia of two new lipids. Surprisingly, the lipid modifications on OLs due to OlsD occur on the amide-linked fatty acyl chain. This is the first report of a hydroxyl modification of OLs on the amide-linked fatty acyl moiety. Formation of hydroxylated OLs occurs only when the biosynthesis pathway for nonmodified standard OLs is intact. The hydroxyl modification of OLs on the amide-linked fatty acyl moiety occurs only under acid stress conditions. An assay has been developed for the OlsD dioxygenase, and an initial characterization of the enzyme is presented.


Subject(s)
Burkholderia cenocepacia/enzymology , Burkholderia cenocepacia/genetics , Dioxygenases/genetics , Fatty Acids/metabolism , Genes, Bacterial/genetics , Membrane Lipids/metabolism , Ornithine/analogs & derivatives , Acids/pharmacology , Amides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia cenocepacia/drug effects , Burkholderia cenocepacia/growth & development , Cardiolipins/metabolism , Cell Membrane/drug effects , Cell Membrane/enzymology , Dioxygenases/metabolism , Esterification/drug effects , Fatty Acids/chemistry , Hydroxylation/drug effects , Lipids/chemistry , Mass Spectrometry , Membrane Lipids/chemistry , Mutation/genetics , Ornithine/chemistry , Ornithine/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/enzymology , Sequence Homology, Amino Acid , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/metabolism
14.
Mol Microbiol ; 79(6): 1496-514, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21205018

ABSTRACT

Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalysed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis.


Subject(s)
Ornithine/analogs & derivatives , Rhizobium tropici/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydroxylation , Lipids/chemistry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Structure , Mutation , Ornithine/chemistry , Ornithine/metabolism , Rhizobium tropici/chemistry , Rhizobium tropici/enzymology , Rhizobium tropici/genetics , Stress, Physiological
15.
Prog Lipid Res ; 49(1): 46-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19703488

ABSTRACT

In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids.


Subject(s)
Amino Acids/metabolism , Bacteria/metabolism , Membrane Lipids/metabolism , Bacteria/enzymology , Cardiolipins/biosynthesis , Cardiolipins/metabolism , Diglycerides/biosynthesis , Diglycerides/metabolism , Glycerophospholipids/biosynthesis , Glycerophospholipids/metabolism , Membrane Lipids/biosynthesis , Membrane Lipids/chemistry , Phosphatidylglycerols/biosynthesis , Phosphatidylglycerols/metabolism , Serine C-Palmitoyltransferase/classification , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/biosynthesis , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...