Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neurosci ; : 1-13, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36453541

ABSTRACT

Aim: To review the main pathological findings of Neuromyelitis Optica Spectrum Disorder (NMOSD) associated with the presence of autoantibodies to aquaporin-4 (AQP4) as well as the mechanisms of astrocyte dysfunction and demyelination. Methods: An comprehensive search of the literature in the field was carried out using the database of The National Center for Biotechnology Information from . Systematic searches were performed until July 2022. Results: NMOSD is an inflammatory and demyelinating disease of the central nervous system mainly in the areas of the optic nerves and spinal cord, thus explaining mostly the clinical findings. Other areas affected in NMOSD are the brainstem, hypothalamus, and periventricular regions. Relapses in NMOSD are generally severe and patients only partially recover. NMOSD includes clinical conditions where autoantibodies to aquaporin-4 (AQP4-IgG) of astrocytes are detected as well as similar clinical conditions where such antibodies are not detected. AQP4 are channel-forming integral membrane proteins of which AQ4 isoforms are able to aggregate in supramolecular assemblies termed orthogonal arrays of particles (OAP) and are essential in the regulation of water homeostasis and the adequate modulation of neuronal activity and circuitry. AQP4 assembly in orthogonal arrays of particles is essential for AQP4-IgG pathogenicity since AQP4 autoantibodies bind to OAPs with higher affinity than for AQP4 tetramers. NMOSD has a complex background with prominent roles for genes encoding cytokines and cytokine receptors. AQP4 autoantibodies activate the complement-mediated inflammatory demyelination and the ensuing damage to AQP4 water channels, leading to water influx, necrosis and axonal loss. Conclusions: NMOSD as an astrocytopathy is a nosological entity different from multiple sclerosis with its own serological marker: immunoglobulin G-type autoantibodies against the AQP4 protein which elicits a complement-dependent cytotoxicity and neuroinflammation. Some patients with typical manifestations of NMSOD are AQP4 seronegative and myelin oligodendrocyte glycoprotein positive. Thus, the detection of autoantibodies against AQP4 or other autoantibodies is crucial for the correct treatment of the disease and immunosuppressant therapy is the first choice.

2.
World J Diabetes ; 13(4): 319-337, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35582669

ABSTRACT

Insulin, a key pleiotropic hormone, regulates metabolism through several signaling pathways in target tissues including skeletal muscle, liver, and brain. In the brain, insulin modulates learning and memory, and impaired insulin signaling is associated with metabolic dysregulation and neurodegenerative diseases. At the receptor level, in aging and Alzheimer's disease (AD) models, the amount of insulin receptors and their functions are decreased. Clinical and animal model studies suggest that memory improvements are due to changes in insulin levels. Furthermore, diabetes mellitus (DM) and insulin resistance are associated with age-related cognitive decline, increased levels of ß-amyloid peptide, phosphorylation of tau protein; oxidative stress, pro-inflammatory cytokine production, and dyslipidemia. Recent evidence shows that deleting brain insulin receptors leads to mild obesity and insulin resistance without influencing brain size and apoptosis development. Conversely, deleting insulin-like growth factor 1 receptor (IGF-1R) affects brain size and development, and contributes to behavior changes. Insulin is synthesized locally in the brain and is released from the neurons. Here, we reviewed proposed pathophysiological hypotheses to explain increased risk of dementia in the presence of DM. Regardless of the exact sequence of events leading to neurodegeneration, there is strong evidence that mitochondrial dysfunction plays a key role in AD and DM. A triple transgenic mouse model of AD showed mitochondrial dysfunction, oxidative stress, and loss of synaptic integrity. These alterations are comparable to those induced in wild-type mice treated with sucrose, which is consistent with the proposal that mitochondrial alterations are associated with DM and contribute to AD development. Alterations in insulin/IGF-1 signaling in DM could lead to mitochondrial dysfunction and low antioxidant capacity of the cell. Thus, insulin/IGF-1 signaling is important for increased neural processing and systemic metabolism, and could be a specific target for therapeutic strategies to decrease alterations associated with age-related cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL