Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364788

ABSTRACT

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Subject(s)
Myelin Sheath , Retroelements , Animals , Gene Expression , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Retroelements/genetics , RNA/metabolism , Zebrafish/genetics , Anura
2.
Pediatr Res ; 90(6): 1161-1170, 2021 12.
Article in English | MEDLINE | ID: mdl-33654279

ABSTRACT

BACKGROUND: Neonatal stroke affects 1 in 2800 live births and is a major cause of neurological injury. The Sonic hedgehog (Shh) signaling pathway is critical for central nervous system (CNS) development and has neuroprotective and reparative effects in different CNS injury models. Previous studies have demonstrated beneficial effects of small molecule Shh-Smoothened agonist (SAG) against neonatal cerebellar injury and it improves Down syndrome-related brain structural deficits in mice. Here we investigated SAG neuroprotection in rat models of neonatal ischemia-reperfusion (stroke) and adult focal white matter injury. METHODS: We used transient middle cerebral artery occlusion at P10 and ethidium bromide (EB) injection in adult rats to induce damage. Following surgery and SAG or vehicle treatment, we analyzed tissue loss, cell proliferation and fate, and behavioral outcome. RESULTS: We report that a single dose of SAG administered following neonatal stroke preserved brain volume, reduced gliosis, enhanced oligodendrocyte progenitor cell (OPC) and EC proliferation, and resulted in long-term cognitive improvement. Single-dose SAG also promoted proliferation of OPCs following focal demyelination in the adult rat. CONCLUSIONS: These findings indicate benefit of one-time SAG treatment post insult in reducing brain injury and improving behavioral outcome after experimental neonatal stroke. IMPACT: A one-time dose of small molecule Sonic hedgehog agonist protected against neonatal stroke and improved long-term behavioral outcomes in a rat model. This study extends the use of Sonic hedgehog in treating developing brain injury, previously shown in animal models of Down syndrome and cerebellar injury. Sonic hedgehog agonist is one of the most promising therapies in treating neonatal stroke thanks to its safety profile and low dosage.


Subject(s)
Hedgehog Proteins/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Small Molecule Libraries/therapeutic use , Stroke/prevention & control , Animals , Behavior, Animal , Cell Proliferation , Disease Models, Animal , Humans , Infant, Newborn , Infarction, Middle Cerebral Artery/complications , Mice , Rats , Rats, Sprague-Dawley , Stroke/etiology
3.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31740610

ABSTRACT

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Subject(s)
Central Nervous System/physiopathology , Gastrointestinal Microbiome , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cell Differentiation/drug effects , Central Nervous System/drug effects , Central Nervous System/immunology , Female , Gastrointestinal Microbiome/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Probiotics/administration & dosage , Remyelination/drug effects , Stem Cells/cytology , Stem Cells/drug effects
5.
Nature ; 573(7772): 130-134, 2019 09.
Article in English | MEDLINE | ID: mdl-31413369

ABSTRACT

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Subject(s)
Adult Stem Cells/pathology , Aging/pathology , Central Nervous System/pathology , Multipotent Stem Cells/pathology , Stem Cell Niche , Animals , Animals, Newborn , Cell Count , Extracellular Matrix/pathology , Female , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Oligodendroglia/pathology , Rats , Stem Cell Niche/physiology
6.
Glia ; 67(8): 1510-1525, 2019 08.
Article in English | MEDLINE | ID: mdl-31038798

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Subject(s)
Aging/physiology , Mesenchymal Stem Cells/physiology , Oligodendroglia/physiology , Remyelination/physiology , Animals , Cells, Cultured , Demyelinating Diseases/physiopathology , Disease Models, Animal , Female , Male , Rats, Inbred F344 , Rats, Sprague-Dawley , Tissue Culture Techniques
7.
J Neurosci ; 38(43): 9228-9239, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30228229

ABSTRACT

New myelin sheaths can be restored to demyelinated axons in a spontaneous regenerative process called remyelination. In general, new myelin sheaths are made by oligodendrocytes newly generated from a widespread population of adult CNS progenitors called oligodendrocyte progenitor cells (OPCs). New myelin in CNS remyelination in both experimental models and clinical diseases can also be generated by Schwann cells (SCs), the myelin-forming cells of the PNS. Fate-mapping studies have shown that SCs contributing to remyelination in the CNS are often derived from OPCs and appear not to be derived from myelinating SCs from the PNS. In this study, we address whether CNS remyelinating SCs can also be generated from PNS-derived cells other than myelinating SCs. Using a genetic fate-mapping approach, we have found that a subpopulation of nonmyelinating SCs identified by the expression of the transcription factor Foxj1 also contribute to CNS SC remyelination, as well as to remyelination in the PNS. We also find that the ependymal cells lining the central canal of the spinal cord, which also express Foxj1, do not generate cells that contribute to CNS remyelination. These findings therefore identify a previously unrecognized population of PNS glia that can participate in the regeneration of new myelin sheaths following CNS demyelination.SIGNIFICANCE STATEMENT Remyelination failure in chronic demyelinating diseases such as multiple sclerosis drives the current quest for developing means by which remyelination in CNS can be enhanced therapeutically. Critical to this endeavor is the need to understand the mechanisms of remyelination, including the nature and identity of the cells capable of generating new myelin sheath-forming cells. Here, we report a previously unrecognized subpopulation of nonmyelinating Schwann cells (SCs) in the PNS, identified by the expression of the transcription factor Foxj1, which can give rise to SCs that are capable of remyelinating both PNS and CNS axons. These cells therefore represent a new cellular target for myelin regenerative strategies for the treatment of CNS disorders characterized by persistent demyelination.


Subject(s)
Forkhead Transcription Factors/biosynthesis , Myelin Sheath/metabolism , Remyelination/physiology , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Animals , Central Nervous System/chemistry , Central Nervous System/metabolism , Female , Forkhead Transcription Factors/genetics , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/chemistry , Peripheral Nervous System/chemistry , Peripheral Nervous System/metabolism , Schwann Cells/chemistry , Sciatic Nerve/chemistry , Spinal Cord/chemistry
8.
Neurosci Bull ; 34(2): 247-260, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29397565

ABSTRACT

The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2+) OPCs was significantly higher than that in mature CC1+ oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.


Subject(s)
Cell Differentiation/physiology , Nerve Tissue Proteins/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Remyelination/physiology , Transcription Factors/metabolism , Animals , Demyelinating Diseases/chemically induced , Lysophosphatidylcholines/toxicity , Mice , Mice, Inbred C57BL , Oligodendrocyte Precursor Cells/cytology , Oligodendroglia/cytology
9.
Cell Rep ; 20(8): 1755-1764, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834740

ABSTRACT

The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.


Subject(s)
Central Nervous System/physiology , Oligodendroglia/physiology , Pericytes/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Central Nervous System/cytology , Central Nervous System/metabolism , Demyelinating Diseases , Humans , Mice , Nerve Regeneration/physiology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Pericytes/cytology , Pericytes/metabolism
10.
Sci Rep ; 6: 31599, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27554391

ABSTRACT

Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERß, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models.


Subject(s)
Cell Differentiation/drug effects , Demyelinating Diseases , Neural Stem Cells , Oligodendroglia , Tamoxifen/pharmacology , Animals , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley
11.
J Cell Biol ; 211(5): 975-85, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26644513

ABSTRACT

The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR-VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines.


Subject(s)
Gene Expression Regulation , Multiple Sclerosis/metabolism , Oligodendroglia/cytology , Receptors, Calcitriol/metabolism , Retinoid X Receptor gamma/metabolism , Stem Cells/cytology , Adult , Aged , Aged, 80 and over , Animals , Cell Differentiation , Cell Lineage , Female , Humans , Male , Middle Aged , Myelin Sheath/chemistry , Protein Binding , Protein Multimerization , Rats , Rats, Sprague-Dawley , Signal Transduction , Vitamin D/metabolism
12.
EMBO Mol Med ; 5(12): 1918-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24293318

ABSTRACT

The increasing effectiveness of new disease-modifying drugs that suppress disease activity in multiple sclerosis has opened up opportunities for regenerative medicines that enhance remyelination and potentially slow disease progression. Although several new targets for therapeutic enhancement of remyelination have emerged, few lend themselves readily to conventional drug development. Here, we used transcription profiling to identify mitogen-activated protein kinase (Mapk) signalling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signalling by elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolysing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination. These data reveal a novel approach to therapeutic enhancement of remyelination amenable to pharmacological intervention and hence with significant potential for translation.


Subject(s)
Cell Differentiation , Central Nervous System/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Myelin Sheath/metabolism , Animals , Bucladesine/chemistry , Bucladesine/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Humans , Immunity, Innate/drug effects , Mitogen-Activated Protein Kinases/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/chemistry , Oligodendroglia/cytology , Oligodendroglia/metabolism , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...