Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 70(11): 5888-5898, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33034549

ABSTRACT

Two morphologically similar halophilic strains, named USBA 874 and USBA 960T, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960T were Q-8, Q-7 and Q-9. The major cellular fatty acids were C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are Salinisphaera species (similarity between 93.6 and 92.3 %), Abyssibacter profundi OUC007T (88.6 %) and Oceanococcus atlanticus 22II-S10r2T (88.7 %). In addition, the result of genome blast distance phylogeny analysis between strains USBA 874 and USBA 960T, Salinisphaera halophila (YIM 95161T), Salinisphaera shabanensis (E1L3AT), Salinisphaera orenii (MK-B5T) and Salinisphaera japonica (YTM-1T) was 18.5 %. Other in silico species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960T revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960T indicated that they formed a different lineage within the family Salinisphaeraceae. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960T and USBA 874 represent a novel genus of the family Salinisphaeraceae and the name Salifodinibacter halophilus gen. nov., sp. nov. is proposed. The type strain is USBA 960T (CMPUJ U095T=CECT 30006T).


Subject(s)
Gammaproteobacteria/classification , Mining , Phylogeny , Sodium Chloride , Bacterial Typing Techniques , Base Composition , Colombia , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/isolation & purification , Genome Size , Geologic Sediments/microbiology , Quinones/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Water Microbiology
2.
Stand Genomic Sci ; 12: 86, 2017.
Article in English | MEDLINE | ID: mdl-29276571

ABSTRACT

A bacterium belonging to the phylum Synergistetes, genus Dethiosulfovibrio was isolated in 2007 from a saline spring in Colombia. Dethiosulfovibrio salsuginis USBA 82T (DSM 21565T= KCTC 5659T) is a mesophilic, strictly anaerobic, slightly halophilic, Gram negative bacterium with a diderm cell envelope. The strain ferments peptides, amino acids and a few organic acids. Here we present the description of the complete genome sequencing and annotation of the type species Dethiosulfovibrio salsuginis USBA 82T. The genome consisted of 2.68 Mbp with a 53.7% G + C. A total of 2609 genes were predicted and of those, 2543 were protein coding genes and 66 were RNA genes. We detected in USBA 82T genome six Synergistetes conserved signature indels (CSIs), specific for Jonquetella, Pyramidobacter and Dethiosulfovibrio. The genome of D. salsuginis contained, as expected, genes related to amino acid transport, amino acid metabolism and thiosulfate reduction. These genes represent the major gene groups of Synergistetes, related with their phenotypic traits, and interestingly, 11.8% of the genes in the genome belonged to the amino acid fermentation COG category. In addition, we identified in the genome some ammonification genes such as nitrate reductase genes. The presence of proline operon genes could be related to de novo synthesis of proline to protect the cell in response to high osmolarity. Our bioinformatics workflow included antiSMASH and BAGEL3 which allowed us to identify bacteriocins genes in the genome.

3.
Stand Genomic Sci ; 12: 78, 2017.
Article in English | MEDLINE | ID: mdl-29255573

ABSTRACT

Here we present the physiological features of Pseudomonas extremaustralis strain USBA-GBX-515 (CMPUJU 515), isolated from soils in Superparamo ecosystems, > 4000 m.a.s.l, in the northern Andes of South America, as well as the thorough analysis of the draft genome. Strain USBA-GBX-515 is a Gram-negative rod shaped bacterium of 1.0-3.0 µm × 0.5-1 µm, motile and unable to form spores, it grows aerobically and cells show one single flagellum. Several genetic indices, the phylogenetic analysis of the 16S rRNA gene sequence and the phenotypic characterization confirmed that USBA-GBX-515 is a member of Pseudomonas genus and, the similarity of the 16S rDNA sequence was 100% with P. extremaustralis strain CT14-3T. The draft genome of P. extremaustralis strain USBA-GBX-515 consisted of 6,143,638 Mb with a G + C content of 60.9 mol%. A total of 5665 genes were predicted and of those, 5544 were protein coding genes and 121 were RNA genes. The distribution of genes into COG functional categories showed that most genes were classified in the category of amino acid transport and metabolism (10.5%) followed by transcription (8.4%) and signal transduction mechanisms (7.3%). We performed experimental analyses of the lipolytic activity and results showed activity mainly on short chain fatty acids. The genome analysis demonstrated the existence of two genes, lip515A and est515A, related to a triacylglycerol lipase and carboxylesterase, respectively. Ammonification genes were also observed, mainly nitrate reductase genes. Genes related with synthesis of poly-hydroxyalkanoates (PHAs), especially poly-hydroxybutyrates (PHBs), were detected. The phaABC and phbABC operons also appeared complete in the genome. P. extremaustralis strain USBA-GBX-515 conserves the same gene organization of the type strain CT14-3T. We also thoroughly analyzed the potential for production of secondary metabolites finding close to 400 genes in 32 biosynthetic gene clusters involved in their production.

4.
Int J Syst Evol Microbiol ; 67(10): 3744-3751, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28875905

ABSTRACT

A free-living, nitrogen-fixing, mesophilic and facultative aerobe, designated strain USBA 369T, was isolated from a terrestrial saline spring of the Colombian Andes. The non-sporulating rods (1.5×0.8 µm) with rounded ends stained Gram-negative and were motile by means of lophotrichous flagella. The strain grew optimally at 30 °C, at pH 6.9-7.5 and with 1.5 % (w/v) NaCl. The major fatty acids detected were C18 : 1ω7c and C19 : 0 cyclo ω8c, and the respiratory lipoquinone ubiquinone 10 (Q-10) was present. The genome consisted of 4.65 Mb with a DNA G+C content of 64.3 mol%. A total of 4371 genes were predicted and, of those, 4300 were protein coding genes and 71 were RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain USBA 369T formed a different lineage within the class Alphaproteobacteria, order Rhizobiales, and DNA homology studies with the most closely related genera, Aurantimonas, Aureimonas and Rhizobium (95 % 16S rRNA gene sequence similarity), showed values of <15 %. The phylogenomic analysis provided evidence for clear phylogenetic divergence between strain USBA 369T and the closely related genera. On the basis of the phenotypic, chemotaxonomic and phylogenomic evidence, strain USBA 369T is considered to represent a novel genus and a novel species for which the name Consotaella salsifontis gen. nov., sp. nov. is proposed. The type strain is USBA 369T (=KCTC 22549T=CMPUJ U369T).


Subject(s)
Alphaproteobacteria/classification , Natural Springs/microbiology , Phylogeny , Salinity , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Colombia , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nitrogen Fixation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL