Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834028

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, ß-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.


Subject(s)
Antioxidants , Carrier Proteins , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Lipid Peroxidation , Autophagy/genetics , Iron/metabolism
2.
Nature ; 622(7981): 112-119, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704727

ABSTRACT

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Subject(s)
Proteomics , Synapses , Adolescent , Animals , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Mice , Young Adult , Cognition/physiology , Dendritic Spines , Gestational Age , Macaca , Neurons/metabolism , Post-Synaptic Density/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Species Specificity , Synapses/metabolism , Synapses/physiology
3.
Exp Neurol ; 365: 114412, 2023 07.
Article in English | MEDLINE | ID: mdl-37075967

ABSTRACT

Normal pressure hydrocephalus (NPH) compromises the morphology of the corpus callosum (CC). This study aims to determine whether 60- or 120-day NPH disrupts the cytoarchitecture and functioning of white matter (WM) and oligodendrocyte precursor cells (OPCs) and establish whether these changes are reversible after hydrocephalus treatment. NPH was induced in CD1 adult mice by inserting an obstructive lamina in the atrium of the aqueduct of Sylvius. Five groups were assembled: sham-operated controls (60 and 120 days), NPH groups (60 and 120 days), and the hydrocephalus-treated group (obstruction removal after 60-d hydrocephalus). We analyzed the cellular integrity of the CC by immunohistochemistry, TUNEL analysis, Western blot assays, and transmission electron microscopy (TEM). We found a reduction in the width of the CC at 60 and 120 days of NPH. TEM analysis demonstrated myelin abnormalities, degenerative changes in the WM, and an increase in the number of hyperdense (dark) axons that were associated with significant astrogliosis, and microglial reactivity. Hydrocephalus also caused a decrease in the expression of myelin-related proteins (MOG and CNPase) and reduced proliferation and population of OPCs, resulting in fewer mature oligodendrocytes. Hydrocephalus resolution only recovers the OPC proliferation and MOG protein density, but the rest of the WM abnormalities persisted. Interestingly, all these cellular and molecular anomalies occur in the absence of behavioral changes. The results suggest that NPH severely disrupts the myelin integrity and affects the OPC turnover in the CC. Remarkably, most of these deleterious events persist after hydrocephalus treatment, which suggests that a late treatment conveys irreversible changes in the WM of CC.


Subject(s)
Hydrocephalus, Normal Pressure , Oligodendrocyte Precursor Cells , Mice , Animals , Corpus Callosum , 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics , Myelin Sheath , Oligodendroglia , Myelin Proteins , Cell Proliferation
4.
Front Neurosci ; 17: 1125999, 2023.
Article in English | MEDLINE | ID: mdl-36908795

ABSTRACT

In adult lizards, new neurons are generated from neural stem cells in the ventricular zone of the lateral ventricles. These new neurons migrate and integrate into the main telencephalic subdivisions. In this work we have studied adult neurogenesis in the lizard Podarcis liolepis (formerly Podarcis hispanica) by administering [3H]-thymidine and bromodeoxyuridine as proliferation markers and euthanizing the animals at different survival times to determine the identity of progenitor cells and to study their lineage derivatives. After short survival times, only type B cells are labeled, suggesting that they are neural stem cells. Three days after administration, some type A cells are labeled, corresponding to recently formed neuroblasts. Type A cells migrate to their final destinations, where they differentiate into mature neurons and integrate into functional circuits. Our results after long survival periods suggest that, in addition to actively dividing type B cells, there is also a type B subpopulation with low proliferative activity. We also found that new neurons incorporated into the olfactory bulb are generated both in situ, in the walls of the anterior extension of the lateral ventricle of the olfactory bulbs, but also at more caudal levels, most likely in anterior levels of the sulcus ventralis/terminalis. These cells follow a tangential migration toward the olfactory bulbs where they integrate. We hypothesized that at least part of the newly generated neurons would undergo a specialization process over time. In support of this prediction, we found two neuronal populations in the cellular layer of the medial cortex, which we named type I and II neurons. At intermediate survival times (1 month) only type II neurons were labeled with [3H]-thymidine, while at longer survival times (3, 6, or 12 months) both type I and type II neurons were labeled. This study sheds light on the ultrastructural characteristics of the ventricular zone of P. liolepis as a neurogenic niche, and adds to our knowledge of the processes whereby newly generated neurons in the adult brain migrate and integrate into their final destinations.

5.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36179668

ABSTRACT

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Brain , Collagen , Humans , Laminin , Midkine , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/physiology , Pericytes
6.
Front Cell Dev Biol ; 10: 834561, 2022.
Article in English | MEDLINE | ID: mdl-35832788

ABSTRACT

Autophagy is a highly conserved process that mediates the targeting and degradation of intracellular components to lysosomes, contributing to the maintenance of cellular homeostasis and to obtaining energy, which ensures viability under stress conditions. Therefore, autophagy defects are common to different neurodegenerative disorders. Rnd3 belongs to the family of Rho GTPases, involved in the regulation of actin cytoskeleton dynamics and important in the modulation of cellular processes such as migration and proliferation. Murine models have shown that Rnd3 is relevant for the correct development and function of the Central Nervous System and lack of its expression produces several motor alterations and neural development impairment. However, little is known about the molecular events through which Rnd3 produces these phenotypes. Interestingly we have observed that Rnd3 deficiency correlates with the appearance of autophagy impairment profiles and irregular mitochondria. In this work, we have explored the impact of Rnd3 loss of expression in mitochondrial function and autophagy, using a Rnd3 KO CRISPR cell model. Rnd3 deficient cells show no alterations in autophagy and mitochondria turnover is not impaired. However, Rnd3 KO cells have an altered mitochondria oxidative metabolism, resembling the effect caused by oxidative stress. In fact, lack of Rnd3 expression makes these cells strictly dependent on glycolysis to obtain energy. Altogether, our results demonstrate that Rnd3 is relevant to maintain mitochondria function, suggesting a possible relationship with neurodegenerative diseases.

7.
Science ; 375(6579): eabk2346, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35084970

ABSTRACT

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Subject(s)
Interneurons/physiology , Median Eminence/embryology , Neural Stem Cells/physiology , Neurogenesis , Prosencephalon/cytology , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , GABAergic Neurons/cytology , GABAergic Neurons/physiology , Gene Expression Profiling , Gestational Age , Humans , Interneurons/cytology , Median Eminence/cytology , Median Eminence/growth & development , Mice , Neural Stem Cells/transplantation , Prosencephalon/embryology , Prosencephalon/growth & development , Transplantation, Heterologous
8.
Elife ; 102021 07 14.
Article in English | MEDLINE | ID: mdl-34259628

ABSTRACT

The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis.


Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate 'progenitor cells' called C cells. These, in turn, divide to generate large numbers of young 'A cells' neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top ('dorsal' position) or to the bottom of the brain ('ventral' position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct 'gene expression'. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.


Subject(s)
Lateral Ventricles/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Transcriptome/genetics , Animals , Female , Male , Mice , Mice, Transgenic , Microdissection , Neural Stem Cells/chemistry , Neural Stem Cells/cytology , Single-Cell Analysis
9.
Front Neuroanat ; 14: 33, 2020.
Article in English | MEDLINE | ID: mdl-32676012

ABSTRACT

Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.

10.
Front Neuroanat ; 12: 31, 2018.
Article in English | MEDLINE | ID: mdl-29755326

ABSTRACT

Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.

12.
Tissue Eng Part A ; 21(9-10): 1633-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25668195

ABSTRACT

Substrate stiffness, biochemical composition, and matrix topography deeply influence cell behavior, guiding motility, proliferation, and differentiation responses. The aim of this work was to determine the effect that the stiffness and protein composition of the underlying substrate has on the differentiation of induced pluripotent stem (iPS) cells and the potential synergy with specific soluble cues. With that purpose, murine iPS-derived embryoid bodies (iPS-EBs) were seeded on fibronectin- or collagen I-coated polyacrylamide (pAA) gels of tunable stiffness (0.6, 14, and 50 kPa) in the presence of basal medium; tissue culture polystyrene plates were employed as control. Specification of iPS cells toward the three germ layers was analyzed, detecting an increase of tissue-specific gene markers in the pAA matrices. Interestingly, soft matrix (0.6 kPa) coated with fibronectin favored differentiation toward cardiac and neural lineages and, in the case of neural differentiation, the effect was potentiated by the addition of specific soluble factors. The generation of mature astrocytes, neural cells, and cardiomyocytes was further proven by immunofluorescence and transmission electron microscopy. In summary, this work emphasizes the importance of using biomimetic matrices to accomplish a more specific and mature differentiation of stem cells for future therapeutic applications.


Subject(s)
Acrylic Resins/pharmacology , Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/cytology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Biomechanical Phenomena/drug effects , Cell Adhesion/drug effects , Cell Lineage/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Induced Pluripotent Stem Cells/drug effects , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Organ Specificity/drug effects
13.
Stem Cells Dev ; 24(4): 484-96, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25329043

ABSTRACT

Stem cell-derived cardiomyocytes (CMs) are often electrophysiologically immature and heterogeneous, which represents a major barrier to their in vitro and in vivo application. Therefore, the purpose of this study was to examine whether Neuregulin-1ß (NRG-1ß) treatment could enhance in vitro generation of mature "working-type" CMs from induced pluripotent stem (iPS) cells and assess the regenerative effects of these CMs on cardiac tissue after acute myocardial infarction (AMI). With that purpose, adult mouse fibroblast-derived iPS from α-MHC-GFP mice were derived and differentiated into CMs through NRG-1ß and/or dimethyl sulfoxide (DMSO) treatment. Cardiac specification and maturation of the iPS was analyzed by gene expression array, quantitative real-time polymerase chain reaction, immunofluorescence, electron microscopy, and patch-clamp techniques. In vivo, the iPS-derived CMs or culture medium control were injected into the peri-infarct region of hearts after coronary artery ligation, and functional and histology changes were assessed from 1 to 8 weeks post-transplantation. On differentiation, the iPS displayed early and robust in vitro cardiogenesis, expressing cardiac-specific genes and proteins. More importantly, electrophysiological studies demonstrated that a more mature ventricular-like cardiac phenotype was achieved when cells were treated with NRG-1ß and DMSO compared with DMSO alone. Furthermore, in vivo studies demonstrated that iPS-derived CMs were able to engraft and electromechanically couple to heart tissue, ultimately preserving cardiac function and inducing adequate heart tissue remodeling. In conclusion, we have demonstrated that combined treatment with NRG-1ß and DMSO leads to efficient differentiation of iPS into ventricular-like cardiac cells with a higher degree of maturation, which are capable of preserving cardiac function and tissue viability when transplanted into a mouse model of AMI.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Neuregulin-1/pharmacology , Animals , Cell Line , Dimethyl Sulfoxide/pharmacology , Fibroblasts/cytology , Heart Ventricles/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Regeneration , Stem Cell Transplantation , Ventricular Function
14.
Brain Struct Funct ; 220(6): 3113-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25009316

ABSTRACT

The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.


Subject(s)
Calbindins/biosynthesis , Lateral Ventricles/metabolism , Neurons/metabolism , Olfactory Bulb/metabolism , rho GTP-Binding Proteins/deficiency , rho GTP-Binding Proteins/metabolism , Animals , Animals, Newborn , Brain/cytology , Brain/growth & development , Brain/metabolism , Brain/physiology , Calbindins/metabolism , Cell Differentiation/physiology , Cell Movement/physiology , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Mice , Neurons/cytology , Olfactory Bulb/cytology , Zona Incerta/cytology , Zona Incerta/growth & development , Zona Incerta/metabolism
15.
Nat Genet ; 46(8): 905-11, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997988

ABSTRACT

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.


Subject(s)
Centrioles/genetics , Microtubule-Associated Proteins/genetics , Orofaciodigital Syndromes/genetics , Cell Line , Child, Preschool , Genetic Predisposition to Disease , HEK293 Cells , Humans , Male , Microcephaly/genetics , Proteins/genetics
16.
Cell ; 156(1-2): 291-303, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439383

ABSTRACT

Neural stem cells (NSCs) exist in germinal centers of the adult brain and in the carotid body (CB), an oxygen-sensing organ that grows under chronic hypoxemia. How stem cell lineage differentiation into mature glomus cells is coupled with changes in physiological demand is poorly understood. Here, we show that hypoxia does not affect CB NSC proliferation directly. Rather, mature glomus cells expressing endothelin-1, the O2-sensing elements in the CB that secrete neurotransmitters in response to hypoxia, establish abundant synaptic-like contacts with stem cells, which express endothelin receptors, and instruct their growth. Inhibition of glomus cell transmitter release or their selective destruction markedly diminishes CB cell growth during hypoxia, showing that CB NSCs are under the direct "synaptic" control of the mature O2-sensitive cells. Thus, glomus cells not only acutely activate the respiratory center but also induce NSC-dependent CB hypertrophy necessary for acclimatization to chronic hypoxemia.


Subject(s)
Carotid Body/metabolism , Neural Stem Cells/metabolism , Oxygen/metabolism , Respiratory Center/metabolism , Animals , Cell Differentiation , Cell Proliferation , Mice , Mice, Transgenic , Prolyl Hydroxylases/metabolism , Rats , Rats, Wistar
17.
J Neurochem ; 121(6): 903-14, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22428561

ABSTRACT

Proper development of neuronal networks relies on the polarization of the neurons, thus the establishment of two compartments, axons and dendrites, whose formation depends on cytoskeletal rearrangements. Rnd proteins are regulators of actin organization and they are important players in several aspects of brain development as neurite formation, axon guidance and neuron migration. We have recently demonstrated that mice lacking RhoE/Rnd3 expression die shortly after birth and have neuromotor impairment and neuromuscular alterations, indicating an abnormal development of the nervous system. In this study, we have further investigated the specific role played by RhoE in several aspects of neuronal development by using hippocampal neuron cultures. Our findings show that neurons from a mice lacking RhoE expression exhibit a decrease in the number and the total length of the neurites. We also show that RhoE-deficient neurons display a reduction in axon outgrowth and a delay in the process of neuronal polarization. In addition, our results suggest an involvement of the RHOA/ROCK/LIMK/COFILIN signaling pathway in the neuronal alterations induced by the lack of RhoE. These findings support our previous report revealing the important role of RhoE in the normal development of the nervous system and may provide novel therapeutic targets in neurodegenerative disorders.


Subject(s)
Cell Polarity/physiology , Neurogenesis/physiology , Neurons/metabolism , Signal Transduction/physiology , rho GTP-Binding Proteins/metabolism , Animals , Blotting, Western , Cells, Cultured , Fluorescent Antibody Technique , Hippocampus/growth & development , Hippocampus/metabolism , Hippocampus/ultrastructure , Mice , Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...