Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Proteomics ; 269: 104719, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36089190

ABSTRACT

Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.


Subject(s)
Streptomyces coelicolor , Anti-Bacterial Agents , Chromatography, Affinity , Chromatography, Liquid , Escherichia coli/metabolism , Escherichia coli Proteins , Membrane Proteins , Phosphopeptides/analysis , Phosphoproteins/analysis , Phosphorylation , Proteome/metabolism , Proteomics/methods , Ribosomal Proteins/metabolism , Streptomyces coelicolor/chemistry , Streptomyces coelicolor/metabolism , Tandem Mass Spectrometry/methods , Titanium , Zirconium/chemistry , Zirconium/metabolism
2.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563376

ABSTRACT

Streptomyces DNA replication starts with the DnaA binding to the origin of replication. Differently to most bacteria, cytokinesis only occurs during sporulation. Cytokinesis is modulated by the divisome, an orderly succession of proteins initiated by FtsZ. Here, we characterised SCO2102, a protein harbouring a DnaA II protein-protein interaction domain highly conserved in Streptomyces. The ΔSCO2102 knockout shows highly delayed sporulation. SCO2102-mCherry frequently co-localises with FtsZ-eGFP during sporulation and greatly reduces FtsZ-eGFP Z-ladder formation, suggesting a role of SCO2102 in sporulation. SCO2102 localises up-stream of SCO2103, a methylenetetrahydrofolate reductase involved in methionine and dTMP synthesis. SCO2102/SCO2103 expression is highly regulated, involving two promoters and a conditional transcription terminator. The ΔSCO2103 knockout shows reduced DNA synthesis and a non-sporulating phenotype. SCO2102-mCherry co-localises with SCO2103-eGFP during sporulation, and SCO2102 is essential for the SCO2103 positioning at sporulating hyphae, since SCO2103-eGFP fluorescent spots are absent in the ΔSCO2102 knockout. We propose a model in which SCO2102 positions SCO2103 in sporulating hyphae, facilitating nucleotide biosynthesis for chromosomal replication. To the best of our knowledge, SCO2102 is the first protein harbouring a DnaA II domain specifically found during sporulation, whereas SCO2103 is the first methylenetetrahydrofolate reductase found to be essential for Streptomyces sporulation.


Subject(s)
Spores, Bacterial , Streptomyces , Bacterial Proteins/metabolism , DNA Replication/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Protein Interaction Domains and Motifs , Replication Origin , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Streptomyces/genetics , Streptomyces/metabolism
3.
Int J Mol Sci ; 22(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34576306

ABSTRACT

Streptomycetes are important biotechnological bacteria that produce several clinically bioactive compounds. They have a complex development, including hyphae differentiation and sporulation. Cytosolic copper is a well-known modulator of differentiation and secondary metabolism. The interruption of the Streptomyces coelicolor SCO2730 (copper chaperone, SCO2730::Tn5062 mutant) blocks SCO2730 and reduces SCO2731 (P-type ATPase copper export) expressions, decreasing copper export and increasing cytosolic copper. This mutation triggers the expression of 13 secondary metabolite clusters, including cryptic pathways, during the whole developmental cycle, skipping the vegetative, non-productive stage. As a proof of concept, here, we tested whether the knockdown of the SCO2730/31 orthologue expression can enhance secondary metabolism in streptomycetes. We created a SCO2730/31 consensus antisense mRNA from the sequences of seven key streptomycetes, which helped to increase the cytosolic copper in S. coelicolor, albeit to a lower level than in the SCO2730::Tn5062 mutant. This antisense mRNA affected the production of at least six secondary metabolites (CDA, 2-methylisoborneol, undecylprodigiosin, tetrahydroxynaphtalene, α-actinorhodin, ε-actinorhodin) in the S. coelicolor, and five (phenanthroviridin, alkylresorcinol, chloramphenicol, pikromycin, jadomycin G) in the S. venezuelae; it also helped to alter the S. albus metabolome. The SCO2730/31 consensus antisense mRNA designed here constitutes a tool for the knockdown of SCO2730/31 expression and for the enhancement of Streptomyces' secondary metabolism.


Subject(s)
Bacterial Proteins/metabolism , Copper-Transporting ATPases/metabolism , Molecular Chaperones/metabolism , Secondary Metabolism , Streptomyces coelicolor/metabolism , Bacterial Proteins/genetics , Copper/metabolism , Copper-Transporting ATPases/genetics , Molecular Chaperones/genetics , Streptomyces coelicolor/genetics
4.
Int J Mol Sci ; 21(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317219

ABSTRACT

The authors wish to make the following corrections to this paper [1]:The author name "Gemma Fernánez-García" should be "Gemma Fernández-García" [...].

5.
Trends Microbiol ; 28(1): 1-2, 2020 01.
Article in English | MEDLINE | ID: mdl-31703845

ABSTRACT

Antimicrobial screening usually analyses the effects of natural or synthetic molecules against pathogens. McAuley et al. changed this paradigm, testing the effect of synthetic compounds against the sporulation of the nonpathogenic bacterium Streptomyces venezuelae. They discovered a novel DNA-targeting antibiotic effective against pathogens.


Subject(s)
Anti-Infective Agents , Streptomyces , Anti-Bacterial Agents/pharmacology , DNA Gyrase
6.
Int J Mol Sci ; 20(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766156

ABSTRACT

Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Amino Acids/analysis , Amino Acids/metabolism , Bacteria/chemistry , Bacterial Infections/microbiology , Bacterial Proteins/chemistry , Chromatography, Liquid/methods , Humans , Phosphoproteins/chemistry , Phosphorylation , Proteomics/methods , Tandem Mass Spectrometry/methods
7.
Sci Rep ; 9(1): 4214, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862861

ABSTRACT

Streptomycetes are important biotechnological bacteria with complex differentiation. Copper is a well-known positive regulator of differentiation and antibiotic production. However, the specific mechanisms buffering cytosolic copper and the biochemical pathways modulated by copper remain poorly understood. Here, we developed a new methodology to quantify cytosolic copper in single spores which allowed us to propose that cytosolic copper modulates asynchrony of germination. We also characterised the SCO2730/2731 copper chaperone/P-type ATPase export system. A Streptomyces coelicolor strain mutated in SCO2730/2731 shows an important delay in germination, growth and sporulation. Secondary metabolism is heavily enhanced in the mutant which is activating the production of some specific secondary metabolites during its whole developmental cycle, including germination, the exponential growth phase and the stationary stage. Forty per cent of the S. coelicolor secondary metabolite pathways, are activated in the mutant, including several predicted pathways never observed in the lab (cryptic pathways). Cytosolic copper is precisely regulated and has a pleiotropic effect in gene expression. The only way that we know to achieve the optimal concentration for secondary metabolism activation, is the mutagenesis of SCO2730/2731. The SCO2730/2731 genes are highly conserved. Their inactivation in industrial streptomycetes may contribute to enhance bioactive compound discovery and production.


Subject(s)
Bacterial Proteins/metabolism , Copper/metabolism , Mutation , Secondary Metabolism , Spores, Bacterial/metabolism , Streptomyces coelicolor/physiology , Bacterial Proteins/genetics , Spores, Bacterial/genetics
8.
Mol Cell Proteomics ; 17(8): 1591-1611, 2018 08.
Article in English | MEDLINE | ID: mdl-29784711

ABSTRACT

Streptomycetes are multicellular bacteria with complex developmental cycles. They are of biotechnological importance as they produce most bioactive compounds used in biomedicine, e.g. antibiotic, antitumoral and immunosupressor compounds. Streptomyces genomes encode many Ser/Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor We identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (first mycelium); secondary metabolite producing hyphae (second mycelium); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signaling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism. Phosphoproteomics revealed 85 unique protein phosphorylation sites, 58 of them differentially phosphorylated during differentiation. Computational analysis suggested that these regulated protein phosphorylation events are implicated in important cellular processes, including cell division, differentiation, regulation of secondary metabolism, transcription, protein synthesis, protein folding and stress responses. We discovered a novel regulated phosphorylation site in the key bacterial cell division protein FtsZ (pSer319) that modulates sporulation and regulates actinorhodin antibiotic production. We conclude that manipulation of distinct protein phosphorylation events may improve secondary metabolite production in industrial streptomycetes, including the activation of cryptic pathways during the screening for new secondary metabolites from streptomycetes.


Subject(s)
Bacterial Proteins/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Proteomics/methods , Secondary Metabolism , Streptomyces coelicolor/metabolism , Humans , Mycelium/metabolism , Phenotype , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphorylation , Signal Transduction , Spores, Bacterial/metabolism , Streptomyces coelicolor/genetics , Time Factors , Transcription, Genetic , Up-Regulation
9.
Front Microbiol ; 9: 312, 2018.
Article in English | MEDLINE | ID: mdl-29515563

ABSTRACT

Extracytoplasmic function (ECF) sigma factors are a major type of bacterial signal-transducers whose biological functions remain poorly characterized in streptomycetes. In this work we studied SCO4117, a conserved ECF sigma factor from the ECF52 family overexpressed during substrate and aerial mycelium stages. The ECF52 sigma factors harbor, in addition to the ECF sigma factor domain, a zinc finger domain, a transmembrane region, a proline-rich C-terminal extension, and a carbohydrate-binding domain. This class of ECF sigma factors is exclusive to Actinobacteria. We demonstrate that SCO4117 is an activator of secondary metabolism, aerial mycelium differentiation, and sporulation, in all the culture media (sucrose-free R5A, GYM, MM, and SFM) analyzed. Aerial mycelium formation and sporulation are delayed in a SCO4117 knockout strain. Actinorhodin production is delayed and calcium-dependent antibiotic production is diminished, in the ΔSCO4117 mutant. By contast, undecylprodigiosin production do not show significant variations. The expression of genes encoding secondary metabolism pathways (deoxysugar synthases, actinorhodin biosynthetic genes) and genes involved in differentiation (rdl, chp, nepA, ssgB) was dramatically reduced (up to 300-fold) in the SCO4117 knockout. A putative motif bound, with the consensus "CSGYN-17bps-SRHA" sequence, was identified in the promoter region of 29 genes showing affected transcription in the SCO4117 mutant, including one of the SCO4117 promoters. SCO4117 is a conserved gene with complex regulation at the transcriptional and post-translational levels and the first member of the ECF52 family characterized.

10.
Nat Commun ; 7: 12467, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27514833

ABSTRACT

Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 µm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization.


Subject(s)
Bacterial Proteins/metabolism , Cell Compartmentation/physiology , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Hyphae/physiology , Streptomyces/physiology , Cell Division/physiology , Cell Wall/metabolism , Microscopy, Fluorescence , Mutation , Peptidoglycan/metabolism , Permeability , Spores, Bacterial/physiology
11.
Sci Rep ; 6: 21659, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26867711

ABSTRACT

This work contributes to the understanding of cell wall modifications during sporulation and germination in Streptomyces by assessing the biological function and biochemical properties of SCO4439, a D-alanyl-D-alanine carboxypeptidase (DD-CPase) constitutively expressed during development. SCO4439 harbors a DD-CPase domain and a putative transcriptional regulator domain, separated by a putative transmembrane region. The recombinant protein shows that DD-CPase activity is inhibited by penicillin G. The spores of the SCO4439::Tn5062 mutant are affected in their resistance to heat and acid and showed a dramatic increase in swelling during germination. The mycelium of the SCO4439::Tn5062 mutant is more sensitive to glycopeptide antibiotics (vancomycin and teicoplanin). The DD-CPase domain and the hydrophobic transmembrane region are highly conserved in Streptomyces, and both are essential for complementing the wild type phenotypes in the mutant. A model for the biological mechanism behind the observed phenotypes is proposed, in which SCO4439 DD-CPase releases D-Ala from peptidoglycan (PG) precursors, thereby reducing the substrate pool for PG crosslinking (transpeptidation). PG crosslinking regulates spore physical resistance and germination, and modulates mycelium resistance to glycopeptides. This study is the first demonstration of the role of a DD-CPase in the maturation of the spore cell wall.


Subject(s)
Cell Wall/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/metabolism , Conserved Sequence , Gene Knockout Techniques , Penicillin G/metabolism , Protease Inhibitors/metabolism , Protein Domains , Spores, Bacterial/enzymology , Spores, Bacterial/metabolism
12.
Appl Microbiol Biotechnol ; 100(6): 2797-808, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26758297

ABSTRACT

Integrative plasmids are one of the best options to introduce genes in low copy and in a stable form into bacteria. The ΦC31-derived plasmids constitute the most common integrative vectors used in Streptomyces. They integrate at different positions (attB and pseudo-attB sites) generating different mutations. The less common ΦBT1-derived vectors integrate at the unique attB site localized in the SCO4848 gene (S. coelicolor genome) or their orthologues in other streptomycetes. This work demonstrates that disruption of SCO4848 generates a delay in spore germination. SCO4848 is co-transcribed with SCO4849, and the spore germination phenotype is complemented by SCO4849. Plasmids pNG1-4 were created by modifying the ΦBT1 integrative vector pMS82 by introducing a copy of SCO4849 under the control of the promoter region of SCO4848. pNG2 and pNG4 also included a copy of the P ermE * in order to facilitate gene overexpression. pNG3 and pNG4 harboured a copy of the bla gene (ampicillin resistance) to facilitate selection in E. coli. pNG1-4 are the only integrative vectors designed to produce a neutral phenotype when they are integrated into the Streptomyces genome. The experimental approach developed in this work can be applied to create phenotypically neutral integrative plasmids in other bacteria.


Subject(s)
Bacteriophages/genetics , Genetic Vectors , Genetics, Microbial/methods , Molecular Biology/methods , Streptomyces/genetics , Streptomyces/virology , Escherichia coli/genetics , Phenotype , Plasmids , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...