Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 9(3): 393-404, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968546

ABSTRACT

The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.

2.
STAR Protoc ; 4(1): 101974, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36633947

ABSTRACT

Despite the known disease relevance of glycans, the biological function and substrate specificities of individual glycosyltransferases are often ill-defined. Here, we describe a protocol to develop chemical, bioorthogonal reporters for the activity of the GalNAc-T family of glycosyltransferases using a tactic termed bump-and-hole engineering. This allows identification of the protein substrates and glycosylation sites of single GalNAc-Ts. Despite requiring transfection of cells with the engineered transferases and enzymes for biosynthesis of bioorthogonal substrates, the tactic complements methods in molecular biology. For complete details on the use and execution of this protocol, please refer to Schumann et al. (2020)1, Cioce et al. (2021)2, and Cioce et al. (2022)3.


Subject(s)
N-Acetylgalactosaminyltransferases , Proteins , Humans , Glycosylation , Proteins/metabolism , Peptides/chemistry , Polysaccharides/chemistry , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/metabolism
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120520, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34739896

ABSTRACT

A family of eight π-extended push-pull coumarins with cross-conjugated (amide) and directly conjugated (p-phenylene, alkyne, alkene) bridges were synthesized through a convergent strategy. Using an experimentally calibrated computational protocol, their UV-Visible light absorption and emission spectra in solution were investigated. Remarkably, amide-, alkyne- and alkene-bridges undergo comparable vertical excitations. The different nature of these bridges manifests during excited-state relaxation and fluorescence. We predict that these molecules can serve as building blocks for p-type semiconductors with low reorganization energies, below 0.2 eV. Since solid-state self-assembly is crucial for this application, we examined the effect of the π-bridge over the supramolecular organization in this family of compounds to determine if stacking prevails in these π-extended coumarin derivatives. Amide and alkyne spacers allow coplanar conformations which crystallize readily; p-phenylene hinders planarity yet allows facile crystallization; alkene-bridged molecules eluded all crystallization attempts. All the crystals obtained feature dense face-to-face π-stacking with 3.5-3.7 Å interlayer distances, expected to facilitate charge transfer processes in the solid state.


Subject(s)
Coumarins , Semiconductors , Molecular Conformation
4.
J Am Chem Soc ; 142(18): 8352-8366, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32249571

ABSTRACT

A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.

5.
Molecules ; 24(6)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875972

ABSTRACT

The high energy packed in alkyne functional group makes alkyne reactions highly thermodynamically favorable and generally irreversible. Furthermore, the presence of two orthogonal π-bonds that can be manipulated separately enables flexible synthetic cascades stemming from alkynes. Behind these "obvious" traits, there are other more subtle, often concealed aspects of this functional group's appeal. This review is focused on yet another interesting but underappreciated alkyne feature: the fact that the CC alkyne unit has the same oxidation state as the -CH2C(O)- unit of a typical carbonyl compound. Thus, "classic carbonyl chemistry" can be accessed through alkynes, and new transformations can be engineered by unmasking the hidden carbonyl nature of alkynes. The goal of this review is to illustrate the advantages of using alkynes as an entry point to carbonyl reactions while highlighting reports from the literature where, sometimes without full appreciation, the concept of using alkynes as a hidden entry into carbonyl chemistry has been applied.


Subject(s)
Aldehydes/chemistry , Alkynes/chemistry , Ketones/chemistry , Catalysis , Cyclization , Molecular Structure , Stereoisomerism
6.
Acc Chem Res ; 51(5): 1206-1219, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29676896

ABSTRACT

Do not bend the triple bonds! This familiar undergraduate mantra must be disobeyed if the alkyne group is used as a building block in molecular construction. This Account will describe our exploits in "alkyne origami", that is, folding oligoalkynes into new shapes via cyclization cascades. This research stems from a set of guidelines for the cyclizations of alkynes that we suggested in 2011 ( Gilmore Chem. Rev. 2011 , 111 , 6513 ; Alabugin J. Am. Chem. Soc. 2011 , 133 , 12608 ). The guidelines blended critical analysis of ∼40 years of experimental research with computations into the comprehensive predictions of the relative favorability of dig-cyclizations of anions and radicals. In this Account, we will show how this new understanding has been instrumental in building polyaromatics. In particular, we illustrate the utility of these stereoelectronic models by developing a toolbox of practical, selective, and efficient synthetic transformations. The high energy and high carbon content render alkynes the perfect precursors for the preparation of polyaromatic ribbons and other carbon-rich materials with precisely controlled structure and reactivity. Still, the paradox of alkyne reactivity (alkynes store a lot of energy but are protected kinetically by their relatively strong π-bonds) requires precise use of stereoelectronic factors for lowering the activation barriers for alkyne cyclizations. These factors are drastically different in the "all-exo" and the "all-endo" cyclization cascades of oligoynes. This Account will highlight the interplay between the stereoelectronics of bond formation and topology of acyclic precursor "folding" into a polycyclic ribbon. The topology of folding is simpler for the endo cascades, which are compatible with initiation either at the edge or at the center. In contrast, the exo cascades require precise folding of an oligoalkyne ribbon by starting the cascade exactly at the center of the chain. These differences define the key challenges in the design of these two types of alkyne cyclization cascades. For the endo processes, the folding is simple, but these processes require a strategy ("LUMO Umpolung") for inverting the usual stereoelectronic requirements of alkyne cyclizations. We also show how alkenes can be used as alkyne equivalents in cyclizations coupled with fragmentations and how one can make endo cyclization products without ever going through an endo cyclization. In contrast, each elementary step of the exo cascades benefits from the inherent exo preference for the radical attack, but these cascades require precise initiation by starting exactly at the central alkyne unit of the oligoyne. This strict selectivity requirement led to the development of traceless directing groups capable of supramolecular assistance to the initiation step and self-terminating departure at the end of the cascade. With attention to electronic effects that can stop radical cascades, oligoalkynes can be selectively converted into precisely shaped and functionalized polyaromatic products. The generality of these concepts is further illustrated by the development of radical "peri annulations" at the zigzag edge of acenes.

7.
Angew Chem Int Ed Engl ; 57(14): 3651-3655, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29405588

ABSTRACT

Radical cyclization reactions at a peri position were used for the synthesis of polyaromatic compounds. Depending on the choice of reaction conditions and substrate, this flexible approach led to Bu3 Sn-substituted phenalene, benzanthrene, and olympicene derivatives. Subsequent reactions with electrophiles provided synthetic access to previously inaccessible functionalized polyaromatic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...