Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cancers (Basel) ; 14(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36291764

ABSTRACT

Overexpression of MYBL2 is associated with poor survival of lung adenocarcinoma patients, but the molecular mechanism by which it regulates transcription and carcinogenesis has not yet been elucidated. In this study, we performed ChIP-seq using an MYBL2-targeted antibody and discovered that MYBL2 primarily binds to the promoters of highly expressed genes in lung adenocarcinoma cells. Using a knockdown experiment of MYBL2 and global transcriptome profiling, we identified that over a thousand genes are dysregulated by MYBL2, and MYBL2 acts as a transcriptional activator in lung adenocarcinoma cells. Moreover, we revealed that the binding sites of FOXM1 are largely shared with MYBL2 binding sites, and genes involved in cell cycle phase transitions are regulated by these transcription factors. We furthermore investigated the effect of a previously reported FOXM1 inhibitor, FDI-6, in lung adenocarcinoma cells. We demonstrated that FDI-6 decreases the proliferation of lung adenocarcinoma cells and inhibits the activities of FOXM1 as well as MYBL2. Moreover, we found that genes involved in cell death and cell cycle are inhibited by FDI-6. Overall, our findings suggest that MYBL2 and FOXM1 activate cell cycle genes together, acting as oncogenic transcription factors in lung adenocarcinoma cells, and they are potential treatment targets for the disease.

2.
Foods ; 10(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205462

ABSTRACT

The decline in wild-caught fisheries paired with increasing global seafood demand is pushing the need for seafood sustainability to the forefront of national and regional priorities. Validation of species identity is a crucial early step, yet conventional monitoring and surveillance tools are limited in their effectiveness because they are extremely time-consuming and require expertise in fish identification. DNA barcoding methods are a versatile tool for the genetic monitoring of wildlife products; however, they are also limited by requiring individual tissue samples from target specimens which may not always be possible given the speed and scale of seafood operations. To circumvent the need to individually sample organisms, we pilot an approach that uses forensic environmental DNA (eDNA) metabarcoding to profile fish species composition from the meltwater in fish holds on industrial and artisanal fishing vessels in Ecuador. Fish identified genetically as present were compared to target species reported by each vessel's crew. Additionally, we contrasted the geographic range of identified species against the satellite-based fishing route data of industrial vessels to determine if identified species could be reasonably expected in the catch.

SELECTION OF CITATIONS
SEARCH DETAIL