Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 369: 122376, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39241597

ABSTRACT

This study evaluated anaerobic co-digestion as a promising strategy for managing organic-contaminated waste streams generated from nanomaterial synthesis. The novel approach enabled precise quantification of organic content, efficient biomethane recovery, and a sustainable redirection of ethanol-contaminated graphene oxide (GO) dispersions. The proposed method achieved high accuracy (93-97%) in detecting organic content in ethanol-contaminated GO dispersions, significantly outperforming the conventional total chemical oxygen demand (tCOD) method, which only reached 75-77% accuracy. Additionally, co-digestion of trace ethanol content in GO dispersions with municipal sludge substantially enhanced methane production kinetics, resulting in a 17.6% increase in specific methane yield (per tCOD added) and a 284% increase in total methane production. Parallel anaerobic digestion (AD) experiments using conductive GO nanosheets (without ethanol) revealed the synergistic impact of GO nanosheets and trace ethanol content as a key mechanism driving these improvements. Furthermore, the study provided evidence of the biological reduction of GO and its magnetite-decorated counterpart, magnetic GO, as indicated by a shift in the ID/IG ratio from 1.06 to 0.77 and a G-band shift from 1606 cm⁻1-1565 cm⁻1. This reduction decreased the stability of nanosheets in the AD liquid phase, promoting their partitioning into the solid phase. This process facilitates the adsorption of the GO phase within the digestate and allows for the slow release of micronutrients when used as soil amendments.


Subject(s)
Graphite , Sewage , Graphite/chemistry , Anaerobiosis , Methane , Biological Oxygen Demand Analysis , Oxides/chemistry
2.
Nat Commun ; 14(1): 7811, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016959

ABSTRACT

Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.

3.
Adv Mater ; 35(42): e2302826, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562445

ABSTRACT

Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.

SELECTION OF CITATIONS
SEARCH DETAIL