Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 385(6711): eabm6131, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39172838

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid ß and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Astrocytes , Glucose , Glycolysis , Hippocampus , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Neurons , Animals , Humans , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Cognition/drug effects , Disease Models, Animal , Glucose/metabolism , Glycolysis/drug effects , Hippocampus/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Lactic Acid/metabolism , Long-Term Potentiation , Memory/drug effects , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Receptors, Aryl Hydrocarbon/metabolism , tau Proteins/metabolism , Tryptophan/metabolism
2.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979192

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

3.
Mol Psychiatry ; 29(5): 1440-1449, 2024 May.
Article in English | MEDLINE | ID: mdl-38302561

ABSTRACT

Schizophrenia (SZ) is a serious mental illness and neuropsychiatric brain disorder with behavioral symptoms that include hallucinations, delusions, disorganized behavior, and cognitive impairment. Regulation of such behaviors requires utilization of neurotransmitters released to mediate cell-cell communication which are essential to brain functions in health and disease. We hypothesized that SZ may involve dysregulation of neurotransmitters secreted from neurons. To gain an understanding of human SZ, induced neurons (iNs) were derived from SZ patients and healthy control subjects to investigate peptide neurotransmitters, known as neuropeptides, which represent the major class of transmitters. The iNs were subjected to depolarization by high KCl in the culture medium and the secreted neuropeptides were identified and quantitated by nano-LC-MS/MS tandem mass spectrometry. Several neuropeptides were identified from schizophrenia patient-derived neurons, including chromogranin B (CHGB), neurotensin, and natriuretic peptide. Focusing on the main secreted CHGB neuropeptides, results revealed differences in SZ iNs compared to control iN neurons. Lower numbers of distinct CHGB peptides were found in the SZ secretion media compared to controls. Mapping of the peptides to the CHGB precursor revealed peptides unique to either SZ or control, and peptides common to both conditions. Also, the iNs secreted neuropeptides under both KCl and basal (no KCl) conditions. These findings are consistent with reports that chromogranin B levels are reduced in the cerebrospinal fluid and specific brain regions of SZ patients. These findings suggest that iNs derived from SZ patients can model the decreased CHGB neuropeptides observed in human SZ.


Subject(s)
Chromogranin B , Neurons , Neuropeptides , Neurotransmitter Agents , Schizophrenia , Humans , Schizophrenia/metabolism , Neuropeptides/metabolism , Neurons/metabolism , Chromogranin B/metabolism , Male , Neurotransmitter Agents/metabolism , Female , Tandem Mass Spectrometry/methods , Adult , Middle Aged , Neurotensin/metabolism , Cells, Cultured , Brain/metabolism
4.
ACS Appl Mater Interfaces ; 15(3): 3925-3933, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36629401

ABSTRACT

In the past 20 years, enzymatic conversions have been intensely examined as a practical and environmentally friendly alternative to traditional organocatalytic conversions for chemicals and pharmaceutical intermediate production. Out of all commercial enzymes, more than one-fourth are oxidoreductases that operate in tandem with coenzymes, typically nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH). Enzymes utilize coenzymes as a source for electrons, protons, or holes. Unfortunately, coenzymes can be exorbitant; thus, recycling coenzymes is paramount to establishing a sustainable and affordable cell-free enzymatic catalyst system. Herein, cost-effective transition metal dichalcogenides (TMDCs), 2H-MoS2, 2H-WS2, and 2H-WSe2, were employed for the first time for direct electrochemical reduction of NAD+ to the active form of the NADH (1,4-NADH). Of the three TMDCs, 2H-WSe2 shows optimal activity, producing 1,4 NADH at a rate of 6.5 µmol cm-2 h-1 and a faradaic efficiency of 45% at -0.8 V vs Ag/AgCl. Interestingly, a self-induced surface reorganization process was identified, where the native surface oxide grown in the air was spontaneously removed in the electrochemical process, resulting in the activation of TMDCs.


Subject(s)
Coenzymes , NAD , NADP , Oxidoreductases , Regeneration
5.
J Chromatogr A ; 1322: 1-7, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24268363

ABSTRACT

A new approach of enhancing the adsorption capability of the widely used polymer adsorbent Tenax TA poly(2,6-diphenylene oxide) through its deposition on a nano-structured template is reported. The modified Tenax TA-coated silica nanoparticles (SNP) are incorporated as an adsorbent bed in silicon based micro-thermal preconcentrator (µTPC) chips with an array of square microposts embedded inside the cavity and sealed with a Pyrex cover. The interior surface of the chip is first modified by depositing SNP using a layer-by-layer self-assembly technique followed by coating with Tenax TA. The adsorption capacity of the SNP-Tenax TA µTPC is enhanced by as much as a factor of three compared to the one coated solely with thin film Tenax TA for the compounds tested. The increased adsorption ability of the Tenax TA is attributed to the higher surface area provided by the underlying porous SNP coating and the pores between SNPs affecting the morphology of deposited Tenax TA film by bringing nano-scale features into the polymer. In addition, the adsorption ability of the SNP coating as a pseudo-selective inorganic adsorption bed for polar compounds was also observed. The modified Tenax TA-coated SNP µTPC is a promising development toward integrated micro-gas chromatography systems.


Subject(s)
Microarray Analysis/methods , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Porosity , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL