Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Bacteriol ; : e0044423, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506530

ABSTRACT

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.

2.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38371317

ABSTRACT

Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes' anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S . hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles.

3.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37179970

ABSTRACT

Symbiosis, the beneficial interactions between two organisms, is a ubiquitous feature of all life on Earth, including associations between animals and bacteria. However, the specific molecular and cellular mechanisms which underlie the diverse partnerships formed between animals and bacteria are still being explored. Entomopathogenic nematodes transport bacteria between insect hosts, together they kill the insect, and the bacteria consume the insect and serve as food source for the nematodes. These nematodes, including those in the Steinernema genus, are effective laboratory models for studying the molecular mechanisms of symbiosis because of the natural partnership they form with Xenorhabdus bacteria and their straightforward husbandry. Steinernema hermaphroditum nematodes and their Xenorhabdus griffiniae symbiotic bacteria are being developed as a genetic model pair for studying symbiosis. Our goal in this project was to begin to identify bacterial genes that may be important for symbiotic interactions with the nematode host. Towards this end, we adapted and optimized a protocol for delivery and insertion of a lacZ- promoter-probe transposon for use in the S. hermaphroditum symbiont, X. griffiniae HGB2511 (Cao et al., 2022). We assessed the frequencies at which we obtained exconjugants, metabolic auxotrophic mutants, and active promoter- lacZ fusions. Our data indicate that the Tn 10 transposon inserted relatively randomly based on the finding that 4.7% of the mutants exhibited an auxotrophic phenotype. Promoter-fusions with the transposon-encoded lacZ , which resulted in expression of ß-galactosidase activity, occurred in 47% of the strains. To our knowledge, this is the first mutagenesis protocol generated for this bacterial species, and will facilitate the implementation of large scale screens for symbiosis and other phenotypes of interest in X. griffiniae .

4.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-36061316

ABSTRACT

Widespread usage of high-throughput sequencing (HTS) in the LIFE SCIENCES has produced a demand for undergraduate and graduate institutions to offer classes exposing students to all aspects of HTS (sample acquisition, laboratory work, sequencing technologies, bioinformatics, and statistical analyses). Despite the increase in demand, many challenges exist for these types of classes. We advocate for the usage of the sourdough starter microbiome for implementing meta-amplicon sequencing. The relatively small community, dominated by a few taxa, enables potential contaminants to be easily identified, while between-sample differences can be quickly statistically assessed. Finally, bioinformatic pipelines and statistical analyses can be carried out on personal student laptops or in a teaching computer lab. In two semesters adopting this system, 12 of 14 students were able to effectively capture the sourdough starter microbiome, using the instructor's paired sample as reference.

5.
Front Microbiol ; 13: 800366, 2022.
Article in English | MEDLINE | ID: mdl-35572647

ABSTRACT

The only known required component of the newly described Type XI secretion system (TXISS) is an outer membrane protein (OMP) of the DUF560 family. TXISSOMPs are broadly distributed across proteobacteria, but properties of the cargo proteins they secrete are largely unexplored. We report biophysical, histochemical, and phenotypic evidence that Xenorhabdus nematophila NilC is surface exposed. Biophysical data and structure predictions indicate that NilC is a two-domain protein with a C-terminal, 8-stranded ß-barrel. This structure has been noted as a common feature of TXISS effectors and may be important for interactions with the TXISSOMP. The NilC N-terminal domain is more enigmatic, but our results indicate it is ordered and forms a ß-sheet structure, and bioinformatics suggest structural similarities to carbohydrate-binding proteins. X. nematophila NilC and its presumptive TXISSOMP partner NilB are required for colonizing the anterior intestine of Steinernema carpocapsae nematodes: the receptacle of free-living, infective juveniles and the anterior intestinal cecum (AIC) in juveniles and adults. We show that, in adult nematodes, the AIC expresses a Wheat Germ Agglutinin (WGA)-reactive material, indicating the presence of N-acetylglucosamine or N-acetylneuraminic acid sugars on the AIC surface. A role for this material in colonization is supported by the fact that exogenous addition of WGA can inhibit AIC colonization by X. nematophila. Conversely, the addition of exogenous purified NilC increases the frequency with which X. nematophila is observed at the AIC, demonstrating that abundant extracellular NilC can enhance colonization. NilC may facilitate X. nematophila adherence to the nematode intestinal surface by binding to host glycans, it might support X. nematophila nutrition by cleaving sugars from the host surface, or it might help protect X. nematophila from nematode host immunity. Proteomic and metabolomic analyses of wild type X. nematophila compared to those lacking nilB and nilC revealed differences in cell wall and secreted polysaccharide metabolic pathways. Additionally, purified NilC is capable of binding peptidoglycan, suggesting that periplasmic NilC may interact with the bacterial cell wall. Overall, these findings support a model that NilB-regulated surface exposure of NilC mediates interactions between X. nematophila and host surface glycans during colonization. This is a previously unknown function for a TXISS.

6.
mSystems ; 7(3): e0031222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35543104

ABSTRACT

Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.


Subject(s)
Moths , Rhabditida , Xenorhabdus , Animals , Ecosystem , Tryptophan , Insecta , Xenorhabdus/genetics , Rhabditida/microbiology
7.
mBio ; 12(4): e0195621, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34399622

ABSTRACT

In host-associated bacteria, surface and secreted proteins mediate acquisition of nutrients, interactions with host cells, and specificity of tissue localization. In Gram-negative bacteria, the mechanism by which many proteins cross and/or become tethered to the outer membrane remains unclear. The domain of unknown function 560 (DUF560) occurs in outer membrane proteins throughout Proteobacteria and has been implicated in host-bacterium interactions and lipoprotein surface exposure. We used sequence similarity networking to reveal three subfamilies of DUF560 homologs. One subfamily includes those DUF560 proteins experimentally characterized thus far: NilB, a host range determinant of the nematode-mutualist Xenorhabdus nematophila, and the surface lipoprotein assembly modulators Slam1 and Slam2, which facilitate lipoprotein surface exposure in Neisseria meningitidis (Y. Hooda, C. C. Lai, A. Judd, C. M. Buckwalter, et al., Nat Microbiol 1:16009, 2016, https://doi.org/10.1038/nmicrobiol.2016.9; Y. Hooda, C. C. L. Lai, T. F. Moraes, Front Cell Infect Microbiol 7:207, 2017, https://doi.org/10.3389/fcimb.2017.00207). We show that DUF560 proteins from a second subfamily facilitate secretion of soluble, nonlipidated proteins across the outer membrane. Using in silico analysis, we demonstrate that DUF560 gene complement correlates with bacterial environment at a macro level and host association at a species level. The DUF560 protein superfamily represents a newly characterized Gram-negative secretion system capable of lipoprotein surface exposure and soluble protein secretion with conserved roles in facilitating symbiosis. In light of these data, we propose that it be titled the type 11 secretion system (TXISS). IMPORTANCE The microbial constituency of a host-associated microbiome emerges from a complex physical and chemical interplay of microbial colonization factors, host surface conditions, and host immunological responses. To fill unique niches within a host, bacteria encode surface and secreted proteins that enable interactions with and responses to the host and co-occurring microbes. Bioinformatic predictions of putative bacterial colonization factor localization and function facilitate hypotheses about the potential of bacteria to engage in pathogenic, mutualistic, or commensal activities. This study uses publicly available genome sequence data alongside experimental results from Xenorhabdus nematophila to demonstrate a role for DUF560 family proteins in secretion of bacterial effectors of host interactions. Our research delineates a broadly distributed family of proteins and enables more accurate predictions of the localization of colonization factors throughout Proteobacteria.


Subject(s)
Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Bacterial Secretion Systems/metabolism , Gram-Negative Bacteria/metabolism , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Secretion Systems/classification , Computer Simulation , Gram-Negative Bacteria/genetics , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Proteobacteria/genetics , Proteobacteria/metabolism , Rhabditida/genetics , Rhabditida/microbiology , Symbiosis
8.
Periodontol 2000 ; 86(1): 14-31, 2021 06.
Article in English | MEDLINE | ID: mdl-33690897

ABSTRACT

The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.


Subject(s)
Bacteria , Microbiota , Animals , Dysbiosis , Host-Pathogen Interactions , Humans , Symbiosis
9.
Environ Microbiol ; 22(12): 5433-5449, 2020 12.
Article in English | MEDLINE | ID: mdl-33078552

ABSTRACT

Xenorhabdus nematophila bacteria are mutualists of Steinernema carpocapsae nematodes and pathogens of insects. Xenorhabdus nematophila exhibits phenotypic variation between insect virulence (V) and the mutualistic (M) support of nematode reproduction and colonization initiation in the infective juvenile (IJ) stage nematode that carries X. nematophila between insect hosts. The V and M phenotypes occur reciprocally depending on levels of the transcription factor Lrp: high-Lrp expressors are M+V- while low-Lrp expressors are V+M-. We report here that variable (wild type) or fixed high-Lrp expressors also are optimized, relative to low- or no-Lrp expressors, for colonization of additional nematode stages: juvenile, adult and pre-transmission infective juvenile (IJ). In contrast, we found that after the bacterial population had undergone outgrowth in mature IJs, the advantage for colonization shifted to low-Lrp expressors: fixed low-Lrp expressors (M-V+) and wild type (M+V+) exhibited higher average bacterial CFU per IJ than did high-Lrp (M+V-) or no-Lrp (M-V-) strains. Further, the bacterial population becomes increasingly low-Lrp expressing, based on expression of an Lrp-dependent fluorescent reporter, as IJs age. These data support a model that virulent X. nematophila have a selective advantage and accumulate in aging IJs in advance of exposure to insect hosts in which this phenotype is necessary.


Subject(s)
Bacterial Proteins/metabolism , Insecta/parasitology , Rhabditida/microbiology , Transcription Factors/metabolism , Xenorhabdus/physiology , Animals , Bacterial Proteins/genetics , Insecta/microbiology , Life Cycle Stages , Phenotype , Rhabditida/growth & development , Symbiosis , Transcription Factors/genetics , Virulence , Xenorhabdus/genetics , Xenorhabdus/pathogenicity
10.
Microbiology (Reading) ; 166(11): 1074-1087, 2020 11.
Article in English | MEDLINE | ID: mdl-33064635

ABSTRACT

Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.


Subject(s)
Bacteriocins/metabolism , Microbial Interactions , Xenorhabdus/physiology , Animals , Anti-Bacterial Agents/metabolism , Antibiosis , Bacteriocins/genetics , Bacteriophage P2/genetics , Manduca/microbiology , Mutation , Nematoda/microbiology , Prophages/genetics , Xenorhabdus/genetics , Xenorhabdus/metabolism
11.
Environ Microbiol ; 2018 May 24.
Article in English | MEDLINE | ID: mdl-29799156

ABSTRACT

Bacterial symbionts can affect several biotic interactions of their hosts, including their competition with other species. Nematodes in the genus Steinernema utilize Xenorhabdus bacterial symbionts for insect host killing and nutritional bioconversion. Here, we establish that the Xenorhabdus bovienii bacterial symbiont (Xb-Sa-78) of Steinernema affine nematodes can impact competition between S. affine and S. feltiae by a novel mechanism, directly attacking its nematode competitor. Through co-injection and natural infection assays we demonstrate the causal role of Xb-Sa-78 in the superiority of S. affine over S. feltiae nematodes during competition. Survival assays revealed that Xb-Sa-78 bacteria kill reproductive life stages of S. feltiae. Microscopy and timed infection assays indicate that Xb-Sa-78 bacteria colonize S. feltiae nematode intestines, which alters morphology of the intestine. These data suggest that Xb-Sa-78 may be an intestinal pathogen of the non-native S. feltiae nematode, although it is a nonharmful colonizer of the native nematode host, S. affine. Screening additional X. bovienii isolates revealed that intestinal infection and killing of S. feltiae is conserved among isolates from nematodes closely related to S. affine, although the underlying killing mechanisms may vary. Together, these data demonstrate that bacterial symbionts can modulate competition between their hosts, and reinforce specificity in mutualistic interactions.

12.
mSphere ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29299529

ABSTRACT

Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila, in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae. Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes of symbiotic bacterial populations within infective juvenile nematodes. Our approach for studying symbioses between bacteria and nematodes provides a system to investigate long-term host-microbe interactions in individual nematodes and extrapolate the lessons learned to other bacterium-animal interactions.

13.
BMC Genomics ; 18(1): 927, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29191166

ABSTRACT

BACKGROUND: Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS: Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS: The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.


Subject(s)
Bacterial Toxins/metabolism , Host-Pathogen Interactions , Tylenchida/microbiology , Tylenchida/physiology , Xenorhabdus/pathogenicity , Aedes , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Genome, Bacterial , Green Fluorescent Proteins/metabolism , Lepidoptera/drug effects , Lepidoptera/immunology , Lepidoptera/microbiology , Male , Phylogeny , Quantitative Trait Loci , Symbiosis , Tylenchida/drug effects , Tylenchida/immunology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Xenorhabdus/classification , Xenorhabdus/genetics , Xenorhabdus/physiology
14.
J Bacteriol ; 199(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28484049

ABSTRACT

In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis.


Subject(s)
Adaptation, Biological , Rhabditida/microbiology , Symbiosis , Xenorhabdus/genetics , Xenorhabdus/physiology , Adaptation, Physiological , Animals
15.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28411220

ABSTRACT

In the entomopathogenic bacterium Xenorhabdus nematophila, cell-to-cell variation in the abundance of the Lrp transcription factor leads to virulence modulation; low Lrp levels are associated with a virulent phenotype and suppression of antimicrobial peptides (AMPs) in Manduca sexta insects, while cells that lack lrp or express high Lrp levels are virulence attenuated and elicit AMP expression. To better understand the basis of these phenotypes, we examined X. nematophila strains expressing fixed Lrp levels. Unlike the lrp-null mutant, the high-lrp strain is fully virulent in Drosophila melanogaster, suggesting that these two strains have distinct underlying causes of virulence attenuation in M. sexta Indeed, the lrp-null mutant was defective in cytotoxicity against M. sexta hemocytes relative to that in the high-lrp and low-lrp strains. Further, supernatant derived from the lrp-null mutant but not from the high-lrp strain was defective in inhibiting weight gain when fed to 1st instar M. sexta These data suggest that contributors to the lrp-null mutant virulence attenuation phenotype are the lack of Lrp-dependent cytotoxic and extracellular oral growth inhibitory activities, which may be particularly important for virulence in D. melanogaster In contrast, the high-Lrp strain was sensitive to the antimicrobial peptide cecropin, had a transient survival defect in M. sexta, and had reduced extracellular levels of insecticidal activity, measured by injection of supernatant into 4th instar M. sexta Thus, high-lrp strain virulence attenuation may be explained by its hypersensitivity to M. sexta host immunity and its inability to secrete one or more insecticidal factors.IMPORTANCE Adaptation of a bacterial pathogen to host environments can be achieved through the coordinated regulation of virulence factors that can optimize success under prevailing conditions. In the insect pathogen Xenorhabdus nematophila, the global transcription factor Lrp is necessary for virulence when injected into Manduca sexta or Drosophila melanogaster insect hosts. However, high levels of Lrp, either naturally occurring or artificially induced, cause attenuation of X. nematophila virulence in M. sexta but not D. melanogaster Here, we present evidence suggesting that the underlying cause of high-Lrp-dependent virulence attenuation in M. sexta is hypersensitivity to host immune responses and decreased insecticidal activity and that high-Lrp virulence phenotypes are insect host specific. This knowledge suggests that X. nematophila faces varied challenges depending on the type of insect host it infects and that its success in these environments depends on Lrp-dependent control of a multifactorial virulence repertoire.


Subject(s)
Bacterial Proteins/metabolism , Transcription Factors/metabolism , Xenorhabdus/metabolism , Xenorhabdus/pathogenicity , Animals , Bacterial Proteins/genetics , Drosophila melanogaster/microbiology , Gene Expression Regulation, Bacterial , Manduca/microbiology , Transcription Factors/genetics , Virulence , Xenorhabdus/genetics , Xenorhabdus/growth & development
16.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28389546

ABSTRACT

Xenorhabdus nematophila bacteria are mutualistic symbionts of Steinernema carpocapsae nematodes and pathogens of insects. The X. nematophila global regulator Lrp controls the expression of many genes involved in both mutualism and pathogenic activities, suggesting a role in the transition between the two host organisms. We previously reported that natural populations of X. nematophila exhibit various levels of Lrp expression and that cells expressing relatively low levels of Lrp are optimized for virulence in the insect Manduca sexta The adaptive advantage of the high-Lrp-expressing state was not established. Here we used strains engineered to express constitutively high or low levels of Lrp to test the model in which high-Lrp-expressing cells are adapted for mutualistic activities with the nematode host. We demonstrate that high-Lrp cells form more robust biofilms in laboratory media than do low-Lrp cells, which may reflect adherence to host tissues. Also, our data showed that nematodes cultivated with high-Lrp strains are more frequently colonized than are those associated with low-Lrp strains. Taken together, these data support the idea that high-Lrp cells have an advantage in tissue adherence and colonization initiation. Furthermore, our data show that high-Lrp-expressing strains better support nematode reproduction than do their low-Lrp counterparts under both in vitro and in vivo conditions. Our data indicate that heterogeneity of Lrp expression in X. nematophila populations provides diverse cell populations adapted to both pathogenic (low-Lrp) and mutualistic (high-Lrp) states.IMPORTANCE Host-associated bacteria experience fluctuating conditions during both residence within an individual host and transmission between hosts. For bacteria that engage in evolutionarily stable, long-term relationships with particular hosts, these fluctuations provide selective pressure for the emergence of adaptive regulatory mechanisms. Here we present evidence that the bacterium Xenorhabdus nematophila uses various levels of the transcription factor Lrp to optimize its association with its two animal hosts, nematodes and insects, with which it behaves as a mutualist and a pathogen, respectively. Building on our previous finding that relatively low cellular levels of Lrp are optimal for pathogenesis, we demonstrate that, conversely, high levels of Lrp promote mutualistic activities with the Steinernema carpocapsae nematode host. These data suggest that X. nematophila has evolved to utilize phenotypic variation between high- and low-Lrp-expression states to optimize its alternating behaviors as a mutualist and a pathogen.


Subject(s)
Bacterial Proteins/metabolism , Rhabditida/microbiology , Rhabditida/physiology , Symbiosis , Transcription Factors/metabolism , Xenorhabdus/physiology , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Transcription Factors/genetics , Virulence , Xenorhabdus/genetics , Xenorhabdus/growth & development , Xenorhabdus/pathogenicity
17.
Front Microbiol ; 8: 209, 2017.
Article in English | MEDLINE | ID: mdl-28261170

ABSTRACT

Photorhabdus luminescens TTO1 and Xenorhabdus nematophila HGB081 are insect pathogenic bacteria and producers of various structurally diverse bioactive natural products. In these entomopathogenic bacteria we investigated the role of the global regulators Lrp, LeuO, and HexA in the production of natural products. Lrp is a general activator of natural product biosynthesis in X. nematophila and for most compounds in TTO1. Microarray analysis confirmed these results in X. nematophila and enabled the identification of additional biosynthesis gene clusters (BGC) regulated by Lrp. Moreover, when promoters of two X. nematophila BGC were analyzed, transcriptional activation by Lrp was observed. In contrast, LeuO in X. nematophila and P. luminescens has both repressing and activating features, depending on the natural product examined. Furthermore, heterologous overexpression of leuO from X. nematophila in the closely related Xenorhabdus szentirmaii resulted in overproduction of several natural products including novel compounds. The presented findings could be of importance for establishing a tool for overproduction of secondary metabolites and subsequent identification of novel compounds.

18.
FEMS Microbiol Lett ; 364(1)2017 01.
Article in English | MEDLINE | ID: mdl-27737947

ABSTRACT

R-type bacteriocins are contractile phage tail-like structures that are bactericidal towards related bacterial species. The C-terminal region of the phage tail fiber protein determines target-binding specificity. The mutualistic bacteria Xenorhabdus nematophila and X. bovienii produce R-type bacteriocins (xenorhabdicins) that are selectively active against different Xenorhabdus species. We analyzed the P2-type remnant prophage clusters in draft sequences of nine strains of X. bovienii The C-terminal tail fiber region in each of the respective strains was unique and consisted of mosaics of modular units. The region between the main tail fiber gene (xbpH1) and the sheath gene (xbpS1) contained a variable number of modules encoding tail fiber fragments. DNA inversion and module exchange between strains was involved in generating tail fiber diversity. Xenorhabdicin-enriched fractions from three different X. bovienii strains isolated from the same nematode species displayed distinct activities against each other. In one set of strains, the strain that produced highly active xenorhabdicin was able to eliminate a sensitive strain. In contrast, xenorhabdicin activity was not a determining factor in the competitive fitness of a second set of strains. These findings suggest that related strains of X. bovienii use xenorhabdicin and additional antagonistic molecules to compete against each other.


Subject(s)
Bacteriocins/metabolism , Viral Tail Proteins/genetics , Xenorhabdus/genetics , Xenorhabdus/metabolism , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antibiosis , Bacteriocins/chemistry , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriophages , DNA, Bacterial/genetics , Genome, Bacterial , Viral Tail Proteins/chemistry , Xenorhabdus/cytology , Xenorhabdus/drug effects
19.
Curr Opin Microbiol ; 31: 184-190, 2016 06.
Article in English | MEDLINE | ID: mdl-27128187

ABSTRACT

In defensive symbioses where microbes benefit their host by killing competitors, predators or parasites, natural selection should favor the transmission of microbes with the most beneficial defensive traits. During the initiation of symbiosis, the host's ability to accurately pre-assess a symbiont's beneficial traits would be a selective advantage. We propose that one mechanism by which a host could recognize and select a beneficial partner would be if the latter displayed an honest signal of its defensive or other symbiotic capabilities. As one example, we suggest that polymorphic toxins and their surface receptors, which are involved in inter-microbial competition and predator killing activities, can be honest signals that facilitate partner choice in defensive symbioses.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteriocins/metabolism , Symbiosis/physiology , Animals , Bacteriocins/genetics , Biological Evolution , Signal Transduction
20.
Evolution ; 70(3): 687-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26867502

ABSTRACT

The coevolution of interacting species can lead to codependent mutualists. Little is known about the effect of selection on partners within verses apart from the association. Here, we determined the effect of selection on bacteria (Xenorhabdus nematophila) both within and apart from its mutualistic partner (a nematode, Steinernema carpocapsae). In nature, the two species cooperatively infect and kill arthropods. We passaged the bacteria either together with (M+), or isolated from (M-), nematodes under two different selection regimes: random selection (S-) and selection for increased virulence against arthropod hosts (S+). We found that the isolated bacteria evolved greater virulence under selection for greater virulence (M-S+) than under random selection (M-S-). In addition, the response to selection in the isolated bacteria (M-S+) caused a breakdown of the mutualism following reintroduction to the nematode. Finally, selection for greater virulence did not alter the evolutionary trajectories of bacteria passaged within the mutualism (M+S+ = M+S-), indicating that selection for the maintenance of the mutualism was stronger than selection for increased virulence. The results show that selection on isolated mutualists can rapidly breakdown beneficial interactions between species, but that selection within a mutualism can supersede external selection, potentially generating codependence over time.


Subject(s)
Rhabditida/microbiology , Symbiosis , Xenorhabdus/physiology , Animals , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...