Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Anat ; 239(1): 184-206, 2021 07.
Article in English | MEDLINE | ID: mdl-33660262

ABSTRACT

The radiation of archosauromorph reptiles in the Triassic Period produced an unprecedented collection of diverse and disparate forms with a mix of varied ecologies and body sizes. Some of these forms were completely unique to the Triassic, whereas others were converged on by later members of Archosauromorpha. One of the most striking examples of this is with Triopticus primus, the early dome-headed form later mimicked by pachycephalosaurid dinosaurs. Here we fully describe the cranial anatomy of Triopticus primus, but also recognize a second dome-headed form from a Upper Triassic deposit in present-day India. The new taxon, Kranosaura kuttyi gen. et sp. nov., is likely the sister taxon of Triopticus primus based on the presence of a greatly expanded skull roof with a deep dorsal opening (possibly the pineal opening) through the dome, similar cranial sculpturing, and a skull table that is expanded more posterior than the posterior extent of the basioccipital. However, the dome of Kranosaura kuttyi gen. et sp. nov. extends anterodorsally, unlike that of any other archosauromorph. Histological sections and computed tomographic reconstructions through the skull of Kranosaura kuttyi gen. et sp. nov. further reveal the uniqueness of the dome of these early archosauromorphs. Moreover, our integrated analysis further demonstrates that there are many ways to create a dome in Amniota. The presence of 'dome-headed' archosauromorphs at two localities on the western and eastern portions of Pangea suggests that these archosauromorphs were widespread and are likely part of more assemblages than currently recognized.


Subject(s)
Animal Distribution , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Skull/anatomy & histology , Animals
2.
Sci Rep ; 9(1): 15678, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666554

ABSTRACT

The idea that original soft tissue structures and the native structural proteins comprising them can persist across geological time is controversial, in part because rigorous and testable mechanisms that can occur under natural conditions, resulting in such preservation, have not been well defined. Here, we evaluate two non-enzymatic structural protein crosslinking mechanisms, Fenton chemistry and glycation, for their possible contribution to the preservation of blood vessel structures recovered from the cortical bone of a Tyrannosaurus rex (USNM 555000 [formerly, MOR 555]). We demonstrate the endogeneity of the fossil vessel tissues, as well as the presence of type I collagen in the outermost vessel layers, using imaging, diffraction, spectroscopy, and immunohistochemistry. Then, we use data derived from synchrotron FTIR studies of the T. rex vessels to analyse their crosslink character, with comparison against two non-enzymatic Fenton chemistry- and glycation-treated extant chicken samples. We also provide supporting X-ray microprobe analyses of the chemical state of these fossil tissues to support our conclusion that non-enzymatic crosslinking pathways likely contributed to stabilizing, and thus preserving, these T. rex vessels. Finally, we propose that these stabilizing crosslinks could play a crucial role in the preservation of other microvascular tissues in skeletal elements from the Mesozoic.


Subject(s)
Collagen Type I/chemistry , Dinosaurs/metabolism , Fossils , Proteins/chemistry , Animals , Bone and Bones/chemistry , Bone and Bones/metabolism , Collagen Type I/metabolism , Humans , Preservation, Biological , Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 111(28): 10245-50, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24982159

ABSTRACT

The placement of over 50 skulls of the well-known horned dinosaur Triceratops within a stratigraphic framework for the Upper Cretaceous Hell Creek Formation (HCF) of Montana reveals the evolutionary transformation of this genus. Specimens referable to the two recognized morphospecies of Triceratops, T. horridus and T. prorsus, are stratigraphically separated within the HCF with the T. prorsus morphology recovered in the upper third of the formation and T. horridus found lower in the formation. Hypotheses that these morphospecies represent sexual or ontogenetic variation within a single species are thus untenable. Stratigraphic placement of specimens appears to reveal ancestor-descendant relationships. Transitional morphologies are found in the middle unit of the formation, a finding that is consistent with the evolution of Triceratops being characterized by anagenesis, the transformation of a lineage over time. Variation among specimens from this critical stratigraphic zone may indicate a branching event in the Triceratops lineage. Purely cladogenetic interpretations of the HCF dataset imply greater diversity within the formation. These findings underscore the critical role of stratigraphic data in deciphering evolutionary patterns in the Dinosauria.


Subject(s)
Biological Evolution , Dinosaurs/physiology , Fossils , Animals , Dinosaurs/classification , Montana
4.
Proc Biol Sci ; 281(1775): 20132741, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24285202

ABSTRACT

The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem 'tissue fixation' by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB - O2 > -O2 >> +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues.


Subject(s)
Fossils , Iron/chemistry , Oxygen/chemistry , Animals , Dinosaurs/anatomy & histology , Iron/analysis , Microscopy, Electron, Transmission , Struthioniformes/blood
5.
PLoS One ; 6(6): e21092, 2011.
Article in English | MEDLINE | ID: mdl-21738608

ABSTRACT

Historically, studies of pachycephalosaurs have recognized plesiomorphically flat-headed taxa and apomorphically domed taxa. More recently, it has been suggested that the expression of the frontoparietal dome is ontogenetic and derived from a flat-headed juvenile morphology. However, strong evidence to support this hypothesis has been lacking. Here we test this hypothesis in a large, stratigraphically constrained sample of specimens assigned to Stegoceras validum, the best known pachycephalosaur, using multiple independent lines of evidence including conserved morphology of ornamentation, landmark-based allometric analyses of frontoparietal shape, and cranial bone histology. New specimens show that the diagnostic ornamentation of the parietosquamosal bar is conserved throughout the size range of the sample, which links flat-headed specimens to domed S. validum. High-resolution CT scans of three frontoparietals reveal that vascularity decreases with size and document a pattern that is consistent with previously proposed histological changes during growth. Furthermore, aspects of dome shape and size are strongly correlated and indicative of ontogenetic growth. These results are complementary and strongly support the hypothesis that the sample represents a growth series of a single taxon. Cranial dome growth is positively allometric, proceeds from a flat-headed to a domed state, and confirms the synonymy of Ornatotholus browni as a juvenile Stegoceras. This dataset serves as the first detailed model of growth and variation in a pachycephalosaur. Flat-headed juveniles possess three characters (externally open cranial sutures, tuberculate dorsal surface texture, and open supratemporal fenestrae) that are reduced or eliminated during ontogeny. These characters also occur in putative flat-headed taxa, suggesting that they may also represent juveniles of domed taxa. However, open cranial sutures and supratemporal fenestrae are plesiomorphic within Ornithischia, and thus should be expected in the adult stage of a primitive pachycephalosaur. Additional lines of evidence will be needed to resolve the taxonomic validity of flat-headed pachycephalosaur taxa.


Subject(s)
Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Skull/anatomy & histology , Animals
6.
PLoS One ; 6(2): e16574, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21347420

ABSTRACT

BACKGROUND: A dinosaur census recorded during the Hell Creek Project (1999-2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. METHODOLOGY/PRINCIPAL FINDINGS: Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. CONCLUSIONS/SIGNIFICANCE: Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained by a historical collecting bias influenced by facies and taphonomic factors. The limited discovery of postcranial elements may also depend on how extensive a fossil quarry is expanded after a skull is collected.


Subject(s)
Dinosaurs/growth & development , Fossils , Geological Phenomena , Animals , Montana
8.
PLoS One ; 4(10): e7626, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19859556

ABSTRACT

BACKGROUND: Extended neoteny and late stage allometric growth increase morphological disparity between growth stages in at least some dinosaurs. Coupled with relatively low dinosaur density in the Upper Cretaceous of North America, ontogenetic transformational representatives are often difficult to distinguish. For example, many hadrosaurids previously reported to represent relatively small lambeosaurine species were demonstrated to be juveniles of the larger taxa. Marginocephalians (pachycephalosaurids + ceratopsids) undergo comparable and extreme cranial morphological change during ontogeny. METHODOLOGY/PRINCIPAL FINDINGS: Cranial histology, morphology and computer tomography reveal patterns of internal skull development that show the purported diagnostic characters for the pachycephalosaurids Dracorex hogwartsia and Stygimoloch spinifer are ontogenetically derived features. Coronal histological sections of the frontoparietal dome of an adult Pachycephalosaurus wyomingensis reveal a dense structure composed of metaplastic bone with a variety of extremely fibrous and acellular tissue. Coronal histological sections and computer tomography of a skull and frontoparietal dome of Stygimoloch spinifer reveal an open intrafrontal suture indicative of a subadult stage of development. These dinosaurs employed metaplasia to rapidly grow and change the size and shape of their horns, cranial ornaments and frontoparietal domes, resulting in extreme cranial alterations during late stages of growth. We propose that Dracorex hogwartsia, Stygimoloch spinifer and Pachycephalosaurus wyomingensis are the same taxon and represent an ontogenetic series united by shared morphology and increasing skull length. CONCLUSIONS/SIGNIFICANCE: Dracorex hogwartsia (juvenile) and Stygimoloch spinifer (subadult) are reinterpreted as younger growth stages of Pachycephalosaurus wyomingensis (adult). This synonymy reduces the number of pachycephalosaurid taxa from the Upper Cretaceous of North America and demonstrates the importance of cranial ontogeny in evaluating dinosaur diversity and taxonomy. These growth stages reflect a continuum rather than specific developmental steps defined by "known" terminal morphologies.


Subject(s)
Dinosaurs/anatomy & histology , Dinosaurs/growth & development , Skull/anatomy & histology , Skull/growth & development , Adaptation, Physiological/physiology , Anatomy, Comparative/methods , Animals , Biological Evolution , Fossils , Paleontology/methods
9.
Proc Biol Sci ; 273(1602): 2757-61, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-17015322

ABSTRACT

This is the first cranial ontogenetic assessment of Triceratops, the well-known Late Cretaceous dinosaur distinguished by three horns and a massive parietal-squamosal frill. Our analysis is based on a growth series of 10 skulls, ranging from a 38 cm long baby skull to about 2 m long adult skulls. Four growth stages correspond to a suite of ontogenetic characters expressed in the postorbital horns, frill, nasal, epinasal horn and epoccipitals. Postorbital horns are straight stubs in early ontogeny, curve posteriorly in juveniles, straighten in subadults and recurve anteriorly in adults. The posterior margin of the baby frill is deeply scalloped. In early juveniles, the frill margin becomes ornamented by 17-19 delta-shaped epoccipitals. Epoccipitals are dorsoventrally compressed in subadults, strongly compressed and elongated in adults and ultimately merge onto the posterior frill margin in older adults. Ontogenetic trends within and between growth stages include: posterior frill margin transitions from scalloped to wavy and smooth; progressive exclusion of the supraoccipital from the foramen magnum; internal hollowing at the base of the postorbital horns; closure of the midline nasal suture; fusion of the epinasal onto the nasals; and epinasal expansion into a morphologically variable nasal horn. We hypothesize that the changes in horn orientation and epoccipital shape function to allow visual identity of juveniles, and signal their attainment of sexual maturity.


Subject(s)
Dinosaurs/anatomy & histology , Dinosaurs/growth & development , Skull/anatomy & histology , Skull/growth & development , Animals , Fossils
SELECTION OF CITATIONS
SEARCH DETAIL
...