Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949888

ABSTRACT

PURPOSE: Patients with microsatellite instability high/mismatch repair deficient (MSI-H/dMMR) and high tumor mutational burden (TMB-H) prostate cancers are candidates for pembrolizumab. We define the genomic features, clinical course, and response to immune checkpoint blockade (ICB) in patients with MSI-H/dMMR and TMB-H prostate cancers without MSI (TMB-H/MSS). METHODS: We sequenced 3,244 tumors from 2,257 prostate cancer patients. MSI-H/dMMR prostate cancer was defined as MSIsensor score ≥10 or MSIsensor score ≥3 and <10 with a deleterious MMR alteration. TMB-H was defined as ≥10 mutations/megabase. PSA50 and RECIST responses were assigned. Overall survival (OS) and radiographic progression-free survival (rPFS) were compared using log rank test. RESULTS: 63 (2.8%) men had MSI-H/dMMR and 33 (1.5%) had TMB-H/MSS prostate cancers. Patients with MSI-H/dMMR and TMB-H/MSS tumors more commonly presented with grade group 5 and metastatic disease at diagnosis. MSI-H/dMMR tumors had higher TMB, indel and neoantigen burden compared with TMB-H/MSS. 27 patients with MSI-H/dMMR and 8 patients with TMB-H/MSS tumors received ICB, none of whom harbored POLE mutations. 45% of MSI-H/dMMR patients had a RECIST response and 65% had a PSA50 response. No TMB-H/MSS patient had a RECIST response and 50% had a PSA50 response. rPFS tended to be longer in MSI-H/dMMR patients than in TMB-H/MSS patients who received immunotherapy. Pronounced differences in genomics, TMB or MSIsensor score were not detected between MSI-H/dMMR responders and non-responders. CONCLUSIONS: MSI-H/dMMR prostate cancers have greater TMB, indel and neoantigen burden compared with TMB-H/MSS prostate cancers, and these differences may contribute to more profound and durable responses to ICB.

2.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968122

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Subject(s)
Single-Cell Analysis , Male , Humans , Single-Cell Analysis/methods , Animals , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Antigens, Surface/metabolism , Antigens, Surface/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/drug therapy , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
3.
Mod Pathol ; 37(10): 100557, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964503

ABSTRACT

Small cell carcinomas (SMC) of the lung are now molecularly classified based on the expression of transcriptional regulators (NEUROD1, ASCL1, POU2F3, and YAP1) and DLL3, which has emerged as an investigational therapeutic target. PLCG2 has been shown to identify a distinct subpopulation of lung SMC with stem cell-like and prometastasis features and poor prognosis. We analyzed the expression of these novel neuroendocrine markers and their association with traditional neuroendocrine markers and patient outcomes in a cohort of bladder neuroendocrine carcinoma (NEC) consisting of 103 SMC and 19 large cell NEC (LCNEC) assembled in tissue microarrays. Coexpression patterns were assessed and integrated with detailed clinical annotation including overall (OS) and recurrence-free survival (RFS) and response to neoadjuvant/adjuvant chemotherapy. We identified 5 distinct molecular subtypes in bladder SMC based on the expression of ASCL1, NEUROD1, and POU2F3: ASCL1+/NEUROD1- (n = 33; 34%), ASCL1- /NEUROD1+ (n = 21; 21%), ASCL1+/NEUROD1+ (n = 17; 17%), POU2F3+ (n = 22, 22%), and ASCL1- /NEUROD1- /POU2F3- (n = 5, 5%). POU2F3+ tumors were mutually exclusive with those expressing ASCL1 and NEUROD1 and exhibited lower expression of traditional neuroendocrine markers. PLCG2 expression was noted in 33 tumors (32%) and was highly correlated with POU2F3 expression (P < .001). DLL3 expression was high in both SMC (n = 72, 82%) and LCNEC (n = 11, 85%). YAP1 expression was enriched in nonneuroendocrine components and negatively correlated with all neuroendocrine markers. In patients without metastatic disease who underwent radical cystectomy, PLCG2+ or POU2F3+ tumors had shorter RFS and OS (P < .05), but their expression was not associated with metastasis status or response to neoadjuvant/adjuvant chemotherapy. In conclusion, the NEC of the bladder can be divided into distinct molecular subtypes based on the expression of ASCL1, NEUROD1, and POU2F3. POU2F3-expressing tumors represent an ASCL1/NEUROD1-negative subset of bladder NEC characterized by lower expression of traditional neuroendocrine markers. Marker expression patterns were similar in SMC and LCNEC. Expression of PLCG2 and POU2F3 was associated with shorter RFS and OS. DLL3 was expressed at high levels in both SMC and LCNEC of the bladder, nominating it as a potential therapeutic target.

4.
Int J Gynecol Pathol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38833720

ABSTRACT

Androgen receptor splicing variant 7 (AR-V7) is a truncated variant of the AR mRNA that may be a predictive biomarker for AR-targeted therapy. AR-V7 has been described in prostate, breast, salivary duct, and hepatocellular carcinomas as well as mammary and extra-mammary Paget disease. We report 2 gynecologic cancers occurring in the lower uterine segment and ovary and both harboring AR-V7 by targeted RNA sequencing. The uterine tumor was an undifferentiated carcinoma consisting of epithelioid cells and focally spindled cells arranged in sheets, nests, and cords associated with brisk mitotic activity and tumor necrosis. The ovarian tumor consisted of glands with cribriform and solid architecture and uniform cytologic atypia. ER and PR were positive in the ovarian tumor and negative in the uterine tumor. Both were positive for AR and negative for HER2, GATA3, and NKX3.1. DNA methylation profiling showed epigenetic similarity of the AR-V7-positive gynecologic cancers to AR-V7-positive breast cancers rather than to prostate cancers. AR-V7 may underpin rare gynecologic carcinomas with undifferentiated histology or cribriform growth reminiscent of prostatic adenocarcinoma and breast invasive ductal carcinoma.

5.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559135

ABSTRACT

A subgroup of castration-resistant prostate cancer (CRPC) aberrantly expresses a gastrointestinal (GI) transcriptome governed by two GI-lineage-restricted transcription factors, HNF1A and HNF4G. In this study, we found that expression of GI transcriptome in CRPC correlates with adverse clinical outcomes to androgen receptor signaling inhibitor treatment and shorter overall survival. Bromo- and extra-terminal domain inhibitors (BETi) downregulated HNF1A, HNF4G, and the GI transcriptome in multiple CRPC models, including cell lines, patient-derived organoids, and patient-derived xenografts, while AR and the androgen-dependent transcriptome were largely spared. Accordingly, BETi selectively inhibited growth of GI transcriptome-positive preclinical models of prostate cancer. Mechanistically, BETi inhibited BRD4 binding at enhancers globally, including both AR and HNF4G bound enhancers while gene expression was selectively perturbed. Restoration of HNF4G expression in the presence of BETi rescued target gene expression without rescuing BRD4 binding. This suggests that inhibition of master transcription factors expression underlies the selective transcriptional effects of BETi. SIGNIFICANCE: GI transcriptome expression in CRPC is regulated by the HNF1A-HNF4G-BRD4 axis and correlates with worse clinical outcomes. Accordingly, BET inhibitors significantly reduce tumor cell growth in multiple GI-transcriptome-positive preclinical models of CRPC. Our studies point that expression of GI transcriptome could serve as a predictive biomarker to BETi therapy response.

6.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38585869

ABSTRACT

To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.

7.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645223

ABSTRACT

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.

8.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645034

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

9.
Mod Pathol ; 37(5): 100467, 2024 May.
Article in English | MEDLINE | ID: mdl-38460672

ABSTRACT

Renal low-grade oncocytic tumor (LOT) is a recently recognized renal cell neoplasm designated within the "other oncocytic tumors" category in the 2022 World Health Organization classification system. Although the clinicopathologic, immunohistochemical, and molecular features reported for LOT have been largely consistent, the data are relatively limited. The morphologic overlap between LOT and other low-grade oncocytic neoplasms, particularly eosinophilic chromophobe renal cell carcinoma (E-chRCC), remains a controversial area in renal tumor classification. To address this uncertainty, we characterized and compared large cohorts of LOT (n = 67) and E-chRCC (n = 69) and revealed notable differences between the 2 entities. Clinically, LOT predominantly affected women, whereas E-chRCC showed a male predilection. Histologically, although almost all LOTs were dominated by a small-nested pattern, E-chRCC mainly showed solid and tubular architectures. Molecular analysis revealed that 87% of LOT cases harbored mutations in the tuberous sclerosis complex (TSC)-mTOR complex 1 (mTORC1) pathway, most frequently in MTOR and RHEB genes; a subset of LOT cases had chromosomal 7 and 19q gains. In contrast, E-chRCC lacked mTORC1 mutations, and 60% of cases displayed chromosomal losses characteristic of chRCC. We also explored the cell of origin for LOT and identified L1 cell adhesion molecule (L1CAM), a collecting duct and connecting tubule principal cell marker, as a highly sensitive and specific ancillary test for differentiating LOT from E-chRCC. This distinctive L1CAM immunohistochemical labeling suggests the principal cells as the cell of origin for LOT, unlike the intercalated cell origin of E-chRCC and oncocytoma. The ultrastructural analysis of LOT showed normal-appearing mitochondria and intracytoplasmic lumina with microvilli, different from what has been described for chRCC. Our study further supports LOT as a unique entity with a benign clinical course. Based on the likely cell of origin and its clinicopathologic characteristics, we propose that changing the nomenclature of LOT to "Oncocytic Principal Cell Adenoma of the Kidney" may be a better way to define and describe this entity.


Subject(s)
Adenoma, Oxyphilic , Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Neural Cell Adhesion Molecule L1 , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/chemistry , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/chemistry , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/analysis , Neural Cell Adhesion Molecule L1/metabolism , Aged , Adult , Adenoma, Oxyphilic/pathology , Adenoma, Oxyphilic/genetics , Diagnosis, Differential , Aged, 80 and over , Immunohistochemistry , Neoplasm Grading , Mutation
10.
Adv Anat Pathol ; 31(2): 70-79, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223983

ABSTRACT

Treatment-related neuroendocrine prostate cancer is a distinctive category of prostate cancer that arises after intensive suppression of the androgen receptor by next-generation therapeutic inhibition of androgen receptor signaling. The biological processes that set in motion the series of events resulting in transformation of adenocarcinoma to neuroendocrine carcinoma include genomic (loss of tumor suppressors TP53 and RB1, amplification of oncogenes N-MYC and Aurora Kinase A, dysregulation of transcription factors SOX2, achaete-scute-homolog 1, and others) as well as epigenomic (DNA methylation, EZH2 overexpression, and others). Pathologic diagnosis is key to effective therapy for this disease, and this is aided by localizing metastatic lesions for biopsy using radioligand imaging in the appropriate clinical context. As our understanding of biology evolves, there has been increased morphologic recognition and characterization of tumor phenotypes that are present in this advanced post-treatment setting. New and promising biomarkers (delta-like ligand 3 and others) have been discovered, which opens up novel therapeutic avenues including immunotherapy and antibody-drug conjugates for this lethal disease with currently limited treatment options.


Subject(s)
Adenocarcinoma , Carcinoma, Neuroendocrine , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/therapeutic use , Prostate/pathology , Carcinoma, Neuroendocrine/pathology , Prostatic Neoplasms/pathology , Adenocarcinoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL