Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(10): 105101, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739360

ABSTRACT

In direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability was controlled by changing the shell adiabat from (α_{F}≃5) (more stable) to (α_{F}≃3.5) (less stable). These experiments show that the performance of lower adiabat implosions improves considerably as the bandwidth is raised indicating that further bandwidth increases, beyond the current capabilities of OMEGA, would be greatly beneficial. These results suggest that the future generation of ultra-broadband lasers could enable achieving high convergence and possibly high gains in direct drive ICF.

2.
Phys Rev E ; 106(5-2): 055214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559357

ABSTRACT

A series of two-dimensional particle-in-cell simulations with speckled laser drivers was carried out to study hot electron generation in direct-drive inertial confinement fusion on OMEGA. Scaling laws were obtained for hot electron fraction and temperature as functions of laser/plasma conditions in the quarter-critical region. Using these scalings and conditions from hydro simulations, the temporal history of hot electron generation can be predicted. The scalings can be further improved to predict hard x-rays for a collection of OMEGA warm target implosions within experimental error bars. These scalings can be readily implemented into inertial confinement fusion design codes.

3.
Rev Sci Instrum ; 93(12): 123513, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586930

ABSTRACT

Low- and mid-mode perturbations are possible candidates for performance limitations in cryogenic direct-drive implosions on the OMEGA laser at the Laboratory of Laser Energetics. Simulations with a 3D hydrocode demonstrated that hotspot imagers do not show evidence of the shell breakup in the dense fuel. However, these same simulations revealed that the low- and mid-mode perturbations in the dense fuel could be diagnosed more easily in the post-stagnation phase of the implosion by analyzing the peak in the x-ray emission limb at the coronal-fuel interface than before or at the stagnation phase. In experiments, the asymmetries are inferred from gated images of the x-ray emission of the implosion by using a 16-pinhole array imager filtered to record x-ray energies >800 eV and an x-ray framing camera with 40-ps time integration and 20-µm spatial resolution. A modal analysis is applied to the spatial distribution of the x-ray emission from deuterium and tritium cryogenic implosions on OMEGA recorded after the bang time to diagnose the low- and mid-mode asymmetries, and to study the effect that the beam-to-target ratio (Rb/Rt) has on the shell integrity.

4.
Rev Sci Instrum ; 93(10): 103505, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319371

ABSTRACT

Areal density is one of the key parameters that determines the confinement time in inertial confinement fusion experiments, and low-mode asymmetries in the compressed fuel are detrimental to the implosion performance. The energy spectra from the scattering of the primary deuterium-tritium (DT) neutrons off the compressed cold fuel assembly are used to investigate low-mode nonuniformities in direct-drive cryogenic DT implosions at the Omega Laser Facility. For spherically symmetric implosions, the shape of the energy spectrum is primarily determined by the elastic and inelastic scattering cross sections for both neutron-deuterium and neutron-tritium kinematic interactions. Two highly collimated lines of sight, which are positioned at nearly orthogonal locations around the OMEGA target chamber, record the neutron time-of-flight signal in the current mode. An evolutionary algorithm is being used to extract a model-independent energy spectrum of the scattered neutrons from the experimental neutron time-of-flight data and is used to infer the modal spatial variations (l = 1) in the areal density. Experimental observations of the low-mode variations of the cold-fuel assembly (ρL0 + ρL1) show good agreement with a recently developed model, indicating a departure from the spherical symmetry of the compressed DT fuel assembly. Another key signature that has been observed in the presence of a low-mode variation is the broadening of the kinematic end-point due to the anisotropy of the dense fuel conditions.

5.
Rev Sci Instrum ; 93(9): 093507, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182458

ABSTRACT

A knock-on deuteron imager (KoDI) has been implemented to measure the fuel and hotspot asymmetry of cryogenic inertial confinement fusion implosions on OMEGA. Energetic neutrons produced by D-T fusion elastically scatter ("knock on") deuterons from the fuel layer with a probability that depends on ρR. Deuterons above 10 MeV are produced by near-forward scattering, and imaging them is equivalent to time-integrated neutron imaging of the hotspot. Deuterons below 6 MeV are produced by a combination of side scattering and ranging in the fuel, and encode information about the spatial distribution of the dense fuel. The KoDI instrument consists of a multi-penumbral aperture positioned 10-20 cm from the implosion using a ten-inch manipulator and a detector pack at 350 cm from the implosion to record penumbral images with magnification of up to 35×. Range filters and the intrinsic properties of CR-39 are used to distinguish different charged-particle images by energy along the same line of sight. Image plates fielded behind the CR-39 record a 10 keV x-ray image using the same aperture. A maximum-likelihood reconstruction algorithm has been implemented to infer the source from the projected penumbral images. The effects of scattering and aperture charging on the instrument point-spread function are assessed. Synthetic data are used to validate the reconstruction algorithm and assess an appropriate termination criterion. Significant aperture charging has been observed in the initial experimental dataset, and increases with aperture distance from the implosion, consistent with a simple model of charging by laser-driven EMP.

6.
Rev Sci Instrum ; 93(9): 093530, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182469

ABSTRACT

A three-dimensional model of the hot-spot x-ray emission has been developed and applied to the study of low-mode drive asymmetries in direct-drive inertial confinement fusion implosions on OMEGA with cryogenic deuterium-tritium targets. The steady-state model assumes an optically thin plasma and the data from four x-ray diagnostics along quasi-orthogonal lines of sight are used to obtain a tomographic reconstruction of the hot spot. A quantitative analysis of the hot-spot shape is achieved by projecting the x-ray emission into the diagnostic planes and comparing this projection to the measurements. The model was validated with radiation-hydrodynamic simulations assuming a mode-2 laser illumination perturbation resulting in an elliptically shaped hot spot, which was accurately reconstructed by the model using synthetic x-ray images. This technique was applied to experimental data from implosions in polar-direct-drive illumination geometry with a deliberate laser-drive asymmetry, and the hot-spot emission was reconstructed using spherical-harmonic modes of up to ℓ = 3. A 10% stronger drive on the equator relative to that on the poles resulted in a prolate-shaped hot spot at stagnation with a large negative A2,0 coefficient of A2,0 = -0.47 ± 0.03, directly connecting the modal contribution of the hot-spot shape with the modal contribution in laser-drive asymmetry.

7.
Phys Rev E ; 106(1): L013201, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974626

ABSTRACT

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.

8.
Phys Rev E ; 105(5-2): 055205, 2022 May.
Article in English | MEDLINE | ID: mdl-35706215

ABSTRACT

The apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression. These results suggest that high-mode instabilities may saturate the scaling of implosion performance with the implosion velocity for laser-direct-drive implosions.

9.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533333

ABSTRACT

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

10.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397224

ABSTRACT

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

11.
Phys Rev E ; 103(2-1): 023201, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736107

ABSTRACT

In deuterium-tritium cryogenic implosions, hot-spot x-ray self-emission is observed to begin at a larger shell radius than is predicted by a one-dimensional radiation-hydrodynamic implosion model. Laser-imprint is shown to explain the observation for a low-adiabat implosion. For more-stable implosions the data are not described by the imprint model and suggest there are additional sources of decompression of the dense fuel.

12.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280561

ABSTRACT

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

13.
Phys Rev E ; 101(6-1): 063207, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688486

ABSTRACT

A target design for mitigating the Rayleigh-Taylor instability is proposed for use in high energy density and direct-drive inertial confinement fusion experiments. In this scheme, a thin gold membrane is offset from the main target by several-hundred microns. A strong picket on the drive beams is incident upon this membrane to produce x rays which generate the initial shock through the target. The main drive follows shortly thereafter, passing through the ablated shell and directly driving the main target. The efficacy of this scheme is demonstrated through experiments performed at the OMEGA EP facility, showing a reduction of the Rayleigh-Taylor instability growth which scales exponentially with frequency, suppressing development by at least a factor of 5 for all wavelengths below 100 µm. This results in a delay in the time of target perforation by ∼40%.

14.
Nature ; 565(7741): 581-586, 2019 01.
Article in English | MEDLINE | ID: mdl-30700868

ABSTRACT

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

15.
Phys Rev E ; 97(1-1): 011203, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448450

ABSTRACT

Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.

SELECTION OF CITATIONS
SEARCH DETAIL
...