Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233287

ABSTRACT

This study assessed the effect of zerumbone (ZER) against fluconazole-resistant (CaR) and -susceptible Candida albicans (CaS) biofilms and verified the influence of ZER on extracellular matrix components. Initially, to determine the treatment conditions, the minimum inhibitory concentration (MIC), the minimum fungicidal concentration (MFC) and the survival curve were evaluated. Biofilms were formed for 48 h and exposed to ZER at concentrations of 128 and 256 µg/mL for 5, 10 and 20 min (n = 12). One group of biofilms did not receive the treatment in order to monitor the effects. The biofilms were evaluated to determine the microbial population (CFU/mL), and the extracellular matrix components (water-soluble polysaccharides (WSP), alkali-soluble polysaccharides (ASPs), proteins and extracellular DNA (eDNA), as well as the biomass (total and insoluble) were quantified. The MIC value of ZER for CaS was 256 µg/mL, and for CaR, it was 64 µg/mL. The survival curve and the MFC value coincided for CaS (256 µg/mL) and CaR (128 µg/mL). ZER reduced the cellular viability by 38.51% for CaS and by 36.99% for CaR. ZER at 256 µg/mL also reduced the total biomass (57%), insoluble biomass (45%), WSP (65%), proteins (18%) and eDNA (78%) of CaS biofilms. In addition, a reduction in insoluble biomass (13%), proteins (18%), WSP (65%), ASP (10%) and eDNA (23%) was also observed in the CaR biofilms. ZER was effective against fluconazole-resistant and -susceptible C. albicans biofilms and disturbed the extracellular matrix.

2.
Biofouling ; 39(1): 94-109, 2023 01.
Article in English | MEDLINE | ID: mdl-36916295

ABSTRACT

The present study aimed to evaluate the effectiveness of hydrogen peroxide (H2O2) combined with antimicrobial photodynamic therapy (aPDT) on biofilms formed by Candida albicans strains which are either susceptible to or resistant to fluconazole. Biofilms were grown and treated with H2O2, followed by the application of Photodithazine® (P) and red light-emitting diode (LED) (L) either separately or combined (n = 12). After the treatment, biofilms were evaluated by estimating colony-forming unit ml-1, extracellular matrix components [water -soluble and -insoluble polysaccharides, proteins, extracellular DNA (eDNA)], biomass (total and insoluble dry-weight), and protein concentration. Biofilms formed by both strains presented a significant reduction in cell viability, biomass, extracellular matrix components (both types of polysaccharides, eDNA), and proteins (in the soluble and insoluble portion of biofilms) compared to the control. Microscopy images of the biofilms after treatments showed disarticulation of the matrix and scattered fungal cells. The application of H2O2 can disturb the organization of the extracellular matrix, and its association with aPDT potentiated the effect of the treatment.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Candida albicans , Hydrogen Peroxide/pharmacology , Photosensitizing Agents/pharmacology , Biofilms , Photochemotherapy/methods
3.
Oral Dis ; 29(4): 1855-1867, 2023 May.
Article in English | MEDLINE | ID: mdl-35133698

ABSTRACT

OBJECTIVE: This study evaluated the effectiveness of DNase I combined with antimicrobial photodynamic therapy, mediated by Photodithazine® and light-emitting diode light, against biofilms formed by a fluconazole-resistant Candida albicans strain (ATCC 96901) and two clinical isolates (R14 and R70). MATERIALS AND METHODS: Biofilms were grown for 48 h and exposed to DNase for 5 min, followed by application of a photosensitizer (P) and light (L), either singly or combined (P+L+, P-L+, P+L-, P-L-, P-L-DNase, P+L+DNase, P+L-DNase, and P-L+DNase; n = 12). Biofilm analysis included quantification of extracellular matrix components (water-soluble and insoluble polysaccharides, proteins and extracellular DNA), and biomass (total and insoluble), as well as the enumeration of colony-forming units. The data were analyzed using three-way analysis of variance with Bonferroni's post hoc test. RESULTS: The DNase treatment combined with aPDT showed a reduction of 1.92, 1.65, and 1.29 log10 of cell viability compared with untreated controls for ATCC 96901, R14, and R70 strains, respectively. It also reduced extracellular matrix contents of water-soluble polysaccharides (36.3%) and extracellular DNA (72.3%), as well as insoluble biomass content (43.3%). CONCLUSION: The three strains showed similar behavior when treated with DNase, and the extracellular matrix components were affected, improving the effectiveness of antimicrobial photodynamic therapy.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Fluconazole/pharmacology , Candida albicans , Deoxyribonucleases/pharmacology , Photosensitizing Agents/pharmacology , Deoxyribonuclease I , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL