Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Med ; 55(2): 2269574, 2023.
Article in English | MEDLINE | ID: mdl-37857364

ABSTRACT

BACKGROUND: Light therapy (LT) for Seasonal Affective Disorders (SAD) has been a well-known and effective treatment for 40 years. The psychiatric university clinic of Groningen, the Netherlands was an early adopter and started research and treatment of SAD in 1987. Research projects on mechanisms, the role of the circadian system, treatment optimization, and investigating new areas for the effects of light treatment have been carried out ever since, leading to a widespread interest across the country. OBJECTIVE: To provide an overview and description of the historical development of LT for mental disorders in the Netherlands. METHODS: A non-systematic, review of research on light treatment for mental problems in the Netherlands, published since 1987 was conducted. RESULTS: The fields of LT and chronotherapy are strongly based in the scientific interests of both chrono-biologists and therapists in the Netherlands. LT has shown effectiveness in treating mood disorders. Likewise, results for other mental disorders have shown some promise, but so far, the outcomes are not always unequivocal and have not always been based on robust data. Ongoing research is discussed. CONCLUSIONS: LT, and in addition exposure to the right light at the right time is an important issue in mental health. Over the past 3 decades research on light and LT in the Netherlands has become well established and is still growing.


Subject(s)
Mental Disorders , Seasonal Affective Disorder , Humans , Netherlands , Mental Disorders/therapy , Seasonal Affective Disorder/therapy , Mood Disorders/therapy , Phototherapy/methods
2.
J Biol Rhythms ; 37(4): 429-441, 2022 08.
Article in English | MEDLINE | ID: mdl-35730553

ABSTRACT

Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness-5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.


Subject(s)
Sleep Quality , Wakefulness , Circadian Rhythm , Humans , Light , Male , Sleep , Sleep, REM
3.
Sci Rep ; 10(1): 16088, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033271

ABSTRACT

The circadian system affects physiological, psychological, and molecular mechanisms in the body, resulting in varying physical performance over the day. The timing and relative size of these effects are important for optimizing sport performance. In this study, Olympic swim times (from 2004 to 2016) were used to determine time-of-day and circadian effects under maximal motivational conditions. Data of athletes who made it to the finals (N = 144, 72 female) were included and normalized on individual levels based on the average swim times over race types (heat, semifinal, and final) per individual for each stroke, distance and Olympic venue. Normalized swim times were analyzed with a linear mixed model and a sine fitted model. Swim performance was better during finals as compared to semi-finals and heats. Performance was strongly affected by time-of-day, showing fastest swim times in the late afternoon around 17:12 h, indicating 0.32% improved performance relative to 08:00 h. This study reveals clear effects of time-of-day on physical performance in Olympic athletes. The time-of-day effect is large, and exceeds the time difference between gold and silver medal in 40%, silver and bronze medal in 64%, and bronze or no medal in 61% of the finals.


Subject(s)
Athletes/psychology , Athletic Performance/psychology , Athletic Performance/statistics & numerical data , Circadian Rhythm , Competitive Behavior/physiology , Female , Humans , Male
4.
Sci Rep ; 8(1): 15214, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315193

ABSTRACT

The mammalian circadian system encodes both absolute levels of light intensity and color to phase-lock (entrain) its rhythm to the 24-h solar cycle. The evolutionary benefits of circadian color-coding over intensity-coding per se are yet far from understood. A detailed characterization of sunlight is crucial in understanding how and why circadian photoreception integrates color and intensity information. To this end, we continuously measured 100 days of sunlight spectra over the course of a year. Our analyses suggest that circadian color-coding may have evolved to cope with cloud-induced variation in light intensity. We proceed to show how an integration of intensity and spectral composition reduces day-to-day variability in the synchronizing signal (Zeitgeber). As a consequence, entrained phase angle of the circadian clock will be more stable, which will be beneficial for the organism. The presented characterization of sunlight dynamics may become important in designing lighting solutions aimed at minimizing the detrimental effects of light at night in modern societies.


Subject(s)
Circadian Rhythm/physiology , Sunlight , Color , Humans , Models, Theoretical , Time Factors
5.
J Affect Disord ; 166: 343-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25012451

ABSTRACT

BACKGROUND: Seasonal affective disorder (SAD) is characterized by recurrent episodes of major depression with a seasonal pattern, treated with light therapy (LT). Duration of light therapy differs. This study investigates retrospectively whether a single week of LT is as effective as two weeks, whether males and females respond differently, and whether there is an effect of expectations as assessed before treatment. METHODS: 83 women, and 25 men received either one-week (n=42) or two weeks (n=66) of LT were included in three studies. Before LT, patients׳ expectations on therapy response were assessed. RESULTS: Depression severity was similar in both groups before treatment (F(1,106)=0.19ns) and decreased significantly during treatment (main effect "time" F(2,105)=176.7, p<0.001). The speed of therapy response differs significantly in treatment duration, in favor of 1 week (F(2,105)=3.2, p=0.046). A significant positive correlation between expectations and therapy response was found in women (ρ=0.243, p=0.027) and not in men (ρ=-0.154,ns). When expectation was added as a covariate in the repeated-measures analysis it shows a positive effect of the level of expectation on the speed of therapy response (F(2,104)=4.1, p=0.018). LIMITATIONS: A limitation is the retrospective design. CONCLUSIONS: There is no difference between 1 and 2 weeks of LT in overall therapy outcome, but the speed of therapy response differed between 1 week LT and 2 weeks LT. Together with the significant correlation between expectations and therapy response in women, we hypothesize that expectations play a role in the speed of therapy response.


Subject(s)
Phototherapy , Seasonal Affective Disorder/therapy , Adult , Female , Humans , Male , Middle Aged , Retrospective Studies
6.
J Affect Disord ; 136(1-2): 72-80, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21911257

ABSTRACT

BACKGROUND: One of the most frequently investigated hypotheses of the pathophysiology underlying Seasonal Affective Disorder (SAD) is a disturbance of circadian rhythms. Since the circadian system as well as other non-visual effects is especially sensitive to blue light, a new light therapy device with blue enriched polychromatic light was tested for its efficacy to treat SAD. METHODS: Within one winter 52 patients were treated in one of three conditions: 30 min full spectrum light (9000 lx, 5000 K), 30 min blue-enriched light (9000 lx, 17,000 K), or 20 min blue-enriched light. The study lasted 22 days with 10 days of morning-light treatment on weekdays during the first 2 weeks. RESULTS: Depressive symptoms (SIGH SAD) diminished over the 3-week period in all conditions, with no significant differences between conditions. The percentage responders were high, differing from 75%, 59% and 71% for the standard-LT, 30 min blue-enriched-LT, and 20 min blue-enriched-LT, respectively. CONCLUSION: The lack of superiority of high intensity blue-enriched light over standard bright light treatment does not clearly support nor rule out the possibility of an important role for the circadian system or the blue sensitive non-visual image forming system in general, in the pathophysiology of SAD. The lack of a difference between conditions may also be the result of a saturated response to the high light intensities used. Recent data indeed suggest that low intensity blue-enriched light may be as effective as standard bright light treatment. The possibility of improving light therapy for SAD patients by applying light of shorter duration or at lower light intensities is highly relevant for optimizing treatment and will help to clarify the role of the circadian system and/or the non-image forming photoreceptors in SAD pathophysiology. CLINICAL TRIAL: https://register.clinicaltrials.gov: NCT01048294.


Subject(s)
Phototherapy/methods , Seasonal Affective Disorder/therapy , Adult , Circadian Rhythm/physiology , Female , Humans , Male , Middle Aged , Seasonal Affective Disorder/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL