Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Microb Ecol ; 86(1): 127-143, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35624343

ABSTRACT

The coccolithophore Emiliania huxleyi shows a variety of responses to ocean acidification (OA) and to high-CO2 concentrations, but there is still controversy on differentiating between these two factors when using different strains and culture methods. A heavily calcified type A strain isolated from the Norwegian Sea was selected and batch cultured in order to understand whether acclimation to OA was mediated mainly by CO2 or H+, and how it impacted cell growth performance, calcification, and physiological stress management. Emiliania huxleyi responded differently to each acidification method. CO2-enriched aeration (1200 µatm, pH 7.62) induced a negative effect on the cells when compared to acidification caused by decreasing pH alone (pH 7.60). The growth rates of the coccolithophore were more negatively affected by high pCO2 than by low pH without CO2 enrichment with respect to the control (400 µatm, pH 8.1). High CO2 also affected cell viability and promoted the accumulation of reactive oxygen species (ROS), which was not observed under low pH. This suggests a possible metabolic imbalance induced by high CO2 alone. In contrast, the affinity for carbon uptake was negatively affected by both low pH and high CO2. Photochemistry was only marginally affected by either acidification method when analysed by PAM fluorometry. The POC and PIC cellular quotas and the PIC:POC ratio shifted along the different phases of the cultures; consequently, calcification did not follow the same pattern observed in cell stress and growth performance. Specifically, acidification by HCl addition caused a higher proportion of severely deformed coccoliths, than CO2 enrichment. These results highlight the capacity of CO2 rather than acidification itself to generate metabolic stress, not reducing calcification.


Subject(s)
Haptophyta , Seawater , Haptophyta/physiology , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Photosynthesis
2.
J Exp Bot ; 70(4): 1283-1297, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30576461

ABSTRACT

Despite the high productivity and ecological importance of seaweeds in polar coastal regions, little is known about their carbon utilization mechanisms, especially the kinetics of the CO2-fixing enzyme Rubisco. We analyzed Rubisco carboxylation kinetics at 4 °C and 25 °C in 12 diverse polar seaweed species (including cold-temperate populations of the same species) and the relationship with their ability to use bicarbonate, by using 13C isotope discrimination and pH drift experiments. We observed a large variation in Rubisco carboxylation kinetics among the selected species, although no correlation was found between either the Michaelis-Menten constant for CO2 (Kc) or Rubisco content per total soluble protein ([Rubisco]/[TSP]) and the ability to use bicarbonate for non-green seaweeds. This study reports intraspecific Rubisco cold adaptation by means of either higher Rubisco carboxylation turnover rate (kcatc) and carboxylase efficiency (kcatc/Kc) at 4 °C or higher [Rubisco]/[TSP] in some of the analyzed species. Our data point to a widespread ability for photosynthetic bicarbonate usage among polar seaweeds, despite the higher affinity of Rubisco for CO2 and higher dissolved CO2 concentration in cold seawater. Moreover, the reported catalytic variation within form ID Rubisco might avert the canonical trade-off previously observed between Kc and kcatc for plant Rubiscos.


Subject(s)
Carbon/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Seaweed/metabolism , Carbon Compounds, Inorganic/metabolism , Cold Temperature , Kinetics , Seaweed/enzymology , Temperature
3.
J Exp Bot ; 68(14): 3971-3984, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28575516

ABSTRACT

Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m-2 s-1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.


Subject(s)
Carbon Dioxide/metabolism , Hot Temperature , Phaeophyceae/metabolism , Photosynthesis , Seaweed/metabolism , Antarctic Regions , Carbon/metabolism , Transcriptome
4.
J Plant Physiol ; 173: 41-50, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462077

ABSTRACT

The combined effects of ocean acidification and ultraviolet radiation (UVR) have been studied in the kelps Alaria esculenta and Saccharina latissima from Kongsfjorden (Svalbard), two major components of the Arctic macroalgal community, in order to assess their potential to thrive in a changing environment. Overall results revealed synergistic effects, however with a different amplitude in the respective species. Changes in growth, internal N, C:N ratio, pigments, optimum quantum yield (Fv/Fm) and electron transport rates (ETR) following CO2 enrichment and/or UVR were generally more pronounced in S. latissima than in A. esculenta. The highest growth rates were recorded under simultaneous CO2 enrichment and UVR in both species. UVR-mediated changes in pigment content were partially prevented under elevated CO2 in both species. Similarly, UVR led to increased photosynthetic efficiency (α) and ETR only if CO2 was not elevated in A. esculenta and even under high CO2 in S. latissima. Increased CO2 did not inhibit external carbonic anhydrase (eCA) activity in the short-term but in the mid-term, indicating a control through acclimation of photosynthesis rather than a direct inhibition of eCA by CO2. The higher benefit of simultaneous CO2 enrichment and UVR for S. latissima respect to A. esculenta seems to involve higher C and N assimilation efficiency, as well as higher ETR, despite a more sensitive Fv/Fm. The differential responses shown by these two species indicate that ongoing ocean acidification and UVR could potentially change the dominance at lower depths (4-6m), which will eventually drive changes at the community level in the Arctic coastal ecosystem. These results support an existing consideration of S. latissima as a winner species in the global change scenario.


Subject(s)
Acclimatization , Carbon Dioxide/metabolism , Phaeophyceae/physiology , Photosynthesis/radiation effects , Carbon/metabolism , Ecosystem , Electron Transport/radiation effects , Hydrogen-Ion Concentration , Nitrogen/metabolism , Oceans and Seas , Phaeophyceae/growth & development , Phaeophyceae/radiation effects , Species Specificity , Ultraviolet Rays
5.
Photochem Photobiol Sci ; 13(9): 1347-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25043601

ABSTRACT

The effects of increased CO2 and irradiance on the physiological performance of the chlorophyte Dunaliella tertiolecta were studied at different PAR and UVR (UVA + UVB) irradiances, simulating the solar radiation at different depths, at present (390 ppmv, LC) and predicted CO2 levels for the year 2100 (1000 ppmv, HC). Elevated CO2 resulted in higher optimum and effective quantum yields (F(v)/F(m) and ϕPSII, respectively), electron transport rates (ETR) and specific growth rates (µ). Cell stress was alleviated in HC with respect to LC as evidenced by a decrease in reactive oxygen species (ROS) accumulation. DNA damage showed a 42-fold increase in cyclobutane-pyrimidine dimer (CPD) formation under the highest irradiance (1100 µmol quanta m(-2) s(-1)) in LC with respect to the lowest irradiance (200 µmol quanta m(-2) s(-1)). Photolyase (CII-PCD-PL) gene expression was upregulated under HC resulting in a drastic decrease in CPD accumulation to only 25% with respect to LC. Proliferating cell nuclear antigen (PCNA) accumulation was always higher in HC and the accumulation pattern indicated its involvement in repair or growth depending on the irradiance dose. The repressor of silencing (ROS1) was only marginally involved in the response, suggesting that photoreactivation was the most relevant mechanism to overcome UVR damage. Our results demonstrate that future scenarios of global change result in alleviation of irradiance stress by CO2-induced photoprotection in D. tertiolecta.


Subject(s)
Carbon Dioxide/chemistry , Chlorophyta/radiation effects , DNA Damage/radiation effects , Ultraviolet Rays , Chlorophyta/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Electron Transport/radiation effects , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism , Quantum Theory , RNA-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation/radiation effects
7.
J Exp Bot ; 57(11): 2661-71, 2006.
Article in English | MEDLINE | ID: mdl-16829547

ABSTRACT

Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external carbonic anhydrase (CAext, EC 4.2.1.1), nitrate reductase (NR, EC 1.6.6.1), and alkaline phosphatase (AP, EC 3.1.3.1), as well as the biochemical composition (total C and N, soluble carbohydrates, soluble proteins, and pigments) were measured. CAext activity was present in all species, and showed a general decrease after nutrient enrichment. Inversely, NR activity increased in most of the species examined. Changes in pigment ratios pointed to the implication of light harvesting system in the acclimation strategy. Despite enzymatic and pigmentary response, the Arctic seaweeds can be regarded as not being N-limited even in summer, as shown by the slight effect of nutrient enrichment on biochemical composition. The exception being the nitrophilic species Monostroma arcticum and, to a lesser extent, Acrosiphonia sp. For the rest of the species studied, changes in total internal C and N, soluble proteins, soluble carbohydrates, pigment content, and the internal pool of inorganic N were recorded only for particular species and no general pattern was shown. Acclimation to unexpected nutrient input seemed to ensure the maintenance of a stable biomass composition, rather than an optimized use of the newly available resource (except for the nitrophilic species). This indicates a high degree of resilience of the algal community to a disruption in the natural nutrient availability pattern.


Subject(s)
Eukaryota/metabolism , Nitrates/metabolism , Phosphates/metabolism , Seasons , Acclimatization , Alkaline Phosphatase/metabolism , Arctic Regions , Atlantic Ocean , Carbon/metabolism , Carbonic Anhydrases/metabolism , Chlorophyll/metabolism , Chlorophyta/metabolism , Nitrate Reductase/metabolism , Nitrogen/metabolism , Phaeophyceae/metabolism , Rhodophyta/metabolism
8.
J Plant Physiol ; 161(2): 211-7, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15022836

ABSTRACT

Total cAMP levels were measured in the macroalgae Dictyota dichotoma, Gelidium sesquipedale and Ulva rigida under different light conditions in order to study its regulation either by phytochrome or photosynthesis. Incubation in red or far-red light did not promote a phytochrome-like response; instead, it showed a synergistic effect upon cAMP accumulation. cAMP levels seemed to depend on the amount of energy applied. The correlation between photosynthetic oxygen evolution and cAMP variations at sub-saturating white light irradiance pointed to photosynthetic electron transport as involved in the regulation of cAMP accumulation at least in G. sesquipedale and U. rigida. Inhibitors of thylakoidal and mitochondrial electron transport chains reduced cAMP levels in 70 to 99%. We conclude that cAMP accumulation could be regulated by photosynthetic activity rather than phytochrome in the macroalgae studied.


Subject(s)
Cyclic AMP/metabolism , Eukaryota/metabolism , Light , Cyclic AMP/radiation effects , Eukaryota/radiation effects , Kinetics , Lighting , Oxygen/metabolism , Phaeophyceae/metabolism , Phaeophyceae/radiation effects , Ulva/metabolism , Ulva/radiation effects
9.
J Photochem Photobiol B ; 70(3): 145-51, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12962638

ABSTRACT

Changes in the accumulation of cAMP levels were measured by the isotope dilution assay using protein kinase A in the lichen Evernia prunastri at varying light conditions. cAMP levels decreased following exposure to low irradiance (20 micromol quanta m(-2) s(-1), and below the compensation point for photosynthesis) of red light (600-710-nm wave length) and increased by 50% after far-red light illumination (15 micromol quanta m(-2) s(-1), 710-800-nm wavelength). Far-red partially reverted the effect of red light when the former was supplied after the latter. cAMP increased to its maximum level under high irradiance supplied by a non-photomorphogenic yellow light source (400 micromol quanta m(-2) s(-1), reaching photosynthetic saturation). The addition of small quantities of red and far-red light, however, had profound restricting effects on cAMP accumulation. The addition of inhibitors of electron transport chains did not promote any significant change in cAMP levels in any of the treatments, indicating that cAMP accumulation could not depend on ATP synthesis. We propose that the response of cAMP accumulation at low irradiance comprises the activation of a morphogenic pathway through a red/far-red photoreceptor. In addition, at high irradiance the response would occur most likely through photosystems II and I acting as sensors of light quantity, that can be strongly modified by the red/far-red photomorphogenic system. Thus, cAMP would be involved in sensing the overall light environment.


Subject(s)
Cyclic AMP/metabolism , Lichens/radiation effects , Light , Carbon Dioxide/metabolism , Electron Transport/radiation effects , Lichens/metabolism , Photosynthesis/radiation effects , Time Factors
10.
Planta ; 218(2): 315-22, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12937985

ABSTRACT

The seaweed Ulva rigida C. Agardh (Chlorophyta) was cultured under two CO(2) conditions supplied through the air bubbling system: non-manipulated air and 1% CO(2)-enriched aeration. These were also combined with N sufficiency and N limitation, using nitrate as the only N source. High CO(2) in U. rigida led to higher growth rates without increasing the C fixed through photosynthesis under N sufficiency. Quantum yields for charge separation at photosystem II (PSII) reaction centres (phi(PSII)) and for oxygen evolution (phi(O2)) decreased at high CO(2) even in N-sufficient thalli. Cyclic electron flow around PSII as part of a photoprotection strategy accompanied by decreased antennae size was suspected. The new re-arrangement of the photosynthetic energy at high CO(2) included reduced investment in processes other than C fixation, as well as in carbon diverted to respiration. As a result, quantum yield for new biomass-C production (phi(growth)) increased. The calculation of the individual quantum yields for the different processes involved allowed the completion of the energy flow scheme through the cell from incident light to biomass production for each of the CO(2) and N-supply conditions studied.


Subject(s)
Carbon Dioxide/pharmacology , Nitrogen/pharmacology , Photosynthesis/physiology , Ulva/metabolism , Cell Respiration/drug effects , Cell Respiration/physiology , Cell Respiration/radiation effects , Chlorophyll/metabolism , Electron Transport/drug effects , Electron Transport/physiology , Electron Transport/radiation effects , Light , Models, Biological , Photosynthesis/drug effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/drug effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Ulva/drug effects , Ulva/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL