Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Healthcare (Basel) ; 12(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38540576

ABSTRACT

Few studies explore emergency medicine (EM) residency shift scheduling software as a mechanism to reduce administrative demands and broader resident burnout. A local needs assessment demonstrated a learning curve for chief resident schedulers and several areas for improvement. In an institutional quality improvement project, we utilized an external online cross-sectional convenience sampling pilot survey of United States EM residency programs to collect information on manual versus software-based resident shift scheduling practices and associated scheduler and scheduler-perceived resident satisfaction. Our external survey response rate was 19/253 (8%), with all United States regions (i.e., northeast, southeast, midwest, west, and southwest) represented. Two programs (11%) reported manual scheduling without any software. ShiftAdmin was the most popularly reported scheduling software (53%). Although not statistically significant, manual scheduling had the lowest satisfaction score and programs with ≤30 residents reported the highest levels of satisfaction. Our data suggest that improvements in existing software-based technologies are needed. Artificial intelligence technologies may prove useful for reducing administrative scheduling demands and optimizing resident scheduling satisfaction.

2.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508137

ABSTRACT

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Subject(s)
Carcinoma, Hepatocellular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/pathology , Cell- and Tissue-Based Therapy , HSP40 Heat-Shock Proteins/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
3.
Nat Commun ; 13(1): 2370, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501350

ABSTRACT

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.


Subject(s)
Cachexia , Neoplasms , Animals , Atrophy/metabolism , Cachexia/metabolism , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Neoplasms/complications , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Cell Surface/metabolism
4.
Dev Cell ; 57(10): 1226-1240.e8, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35483358

ABSTRACT

Rhabdomyosarcoma (RMS) is a pediatric cancer with features of skeletal muscle; patients with unresectable or metastatic RMS fare poorly due to high rates of disease recurrence. Here, we use single-cell and single-nucleus RNA sequencing to show that RMS tumors recapitulate the spectrum of embryonal myogenesis. Using matched patient samples from a clinical trial and orthotopic patient-derived xenografts (O-PDXs), we show that chemotherapy eliminates the most proliferative component with features of myoblasts within embryonal RMS; after treatment, the immature population with features of paraxial mesoderm expands to reconstitute the developmental hierarchy of the original tumor. We discovered that this paraxial mesoderm population is dependent on EGFR signaling and is sensitive to EGFR inhibitors. Taken together, these data serve as a proof of concept that targeting each developmental state in embryonal RMS is an effective strategy for improving outcomes by preventing disease recurrence.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Drug Resistance , ErbB Receptors , Humans , Muscle Development/genetics , Neoplasm Recurrence, Local , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma, Embryonal/drug therapy , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/pathology
5.
West J Emerg Med ; 24(1): 110-113, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36602487

ABSTRACT

Working on the frontlines with safety-net populations, emergency physicians are uniquely positioned to take on a greater role in addressing the current health literacy crisis and specific barriers that may exist. Here, we review the concept of universal health literacy precautions and explore the application of these universal precautions in conjunction with other patient-centered strategies. More specifically, to improve patient understanding and outcomes, emergency physicians can pair universal health literacy precautions with strategies including multiple learning techniques, dual-code theory, empowerment counseling, family buy-in, and hands-on practice. We provide two examples of emergency department encounters where this combined approach was used differently yet successfully and efficiently. Ultimately, we aim to highlight the value of emergency physicians being equipped with basic skills in health literacy educational strategies.


Subject(s)
Health Literacy , Physicians , Humans , Universal Precautions , Patients , Emergency Service, Hospital
6.
Nat Commun ; 12(1): 6468, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753908

ABSTRACT

Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Indoles/therapeutic use , Morpholines/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Animals , Benzothiazoles , Blotting, Western , Cell Line, Tumor , Drug Synergism , Enzyme Activation/drug effects , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Nude , Molecular Dynamics Simulation , Naphthyridines , Real-Time Polymerase Chain Reaction
7.
Indian J Gastroenterol ; 40(5): 502-511, 2021 10.
Article in English | MEDLINE | ID: mdl-34569014

ABSTRACT

OBJECTIVES: To characterize the frequency and association of gastrointestinal (GI) symptoms with outcomes in patients with corona virus disease 2019  (COVID-19) admitted to the hospital. METHODS: Records were retrospectively collected from patients admitted to a tertiary care center in Washington, D.C., with confirmed COVID-19 from March 15, 2020  to July 15, 2020. After adjusting for clinical demographics and comorbidities, multivariate logistic regression analysis was performed. RESULTS: The most common  presenting symptoms of COVID-19 in patients that were admitted to the hospital were cough (38.4%), shortness of breath (37.5%), and fever (34.3%), followed by GI symptoms in 25.9% of patients. The most common GI symptom was diarrhea (12.8%) followed by nausea or vomiting (10.5%), decreased appetite (9.3%), and abdominal pain (3.8%). Patients with diarrhea were more likely to die (odds ratio [OR] 2.750; p = 0.006; confidence interval [CI] 1.329-5.688), be admitted to the intensive care unit (ICU) (OR 2.242; p = 0.019; CI 1.139-4.413), and be intubated (OR 3.155; p = 0.002; CI 1.535-6.487). Additional outcomes analyzed were need for vasopressors, presence of shock, and acute kidney injury. Patients with  diarrhea  were 2.738 (p = 0.007; CI 1.325-5.658), 2.467 (p = 0.013; CI 1.209-5.035), and 2.694 (p = 0.007; CI 1.305-5.561) times more likely to experience these outcomes, respectively. CONCLUSIONS: Screening questions should be expanded to include common GI symptoms in patients with COVID-19. Health care providers should note whether their patient is presenting with diarrhea due to the potential implications on disease severity and outcomes.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Diarrhea/epidemiology , Diarrhea/etiology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology , Humans , Retrospective Studies , SARS-CoV-2
8.
Cancer Cell ; 34(3): 411-426.e19, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30146332

ABSTRACT

Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome. We integrated transcriptomic, epigenomic, and proteomic/phosphoproteomic data to elucidate the cellular origins and therapeutic vulnerabilities of rhabdomyosarcoma (RMS). We discovered that alveolar RMS occurs further along the developmental program than embryonal RMS. We also identified deregulation of the RAS/MEK/ERK/CDK4/6, G2/M, and unfolded protein response pathways through our integrated analysis. Comprehensive preclinical testing revealed that targeting the WEE1 kinase in the G2/M pathway is the most effective approach in vivo for high-risk RMS.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Muscle Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Rhabdomyosarcoma/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child , Epigenomics , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Genomics , Humans , Male , Mice , Molecular Targeted Therapy/methods , Muscle Neoplasms/genetics , Muscle Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Precision Medicine/methods , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proteomics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Unfolded Protein Response/genetics , Xenograft Model Antitumor Assays
9.
Nature ; 549(7670): 96-100, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28854174

ABSTRACT

Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30%. To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient's tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and vincristine can lead to complete response in multiple rhabdomyosarcoma orthotopic patient-derived xenografts tumours in vivo.


Subject(s)
Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Bortezomib/pharmacology , Bortezomib/therapeutic use , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Child , Clone Cells , Drug Therapy, Combination , Epigenesis, Genetic , Female , Heterografts/drug effects , Heterografts/metabolism , Heterografts/pathology , Heterografts/transplantation , High-Throughput Screening Assays/methods , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Irinotecan , Mice , Neoplasms/genetics , Nuclear Proteins/antagonists & inhibitors , Panobinostat , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidinones , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Vincristine/pharmacology , Vincristine/therapeutic use
10.
J Phys Chem C Nanomater Interfaces ; 121(10): 5585-5593, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-31080538

ABSTRACT

Effect of microwave heating on the crystallization of glutathione (GSH) tripeptide using the metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique is reported. GSH crystals were grown from supersaturated solutions of GSH (300-500 mg/mL) on the iCrystal plates with silver nanoparticle films (SNFs) and without SNFs in three different microwave systems operating at 2.45 GHz: conventional (multimode, fixed power at 900W), industrial (monomode, variable power up to 1200 W), and the iCrystal system (monomode, variable power up to 100 W). The efficacy of the MA-MAEC technique, in terms of improvement in the crystallization time, crystal size and quality of GSH, was compared between the three microwave systems and the crystallization at room temperature (no microwave heating, a control experiment). Optical microscopy was used to visualize and quantify the growth of GSH crystals during and after microwave heating. Powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy data showed that GSH crystals had identical crystal structure to those grown at room temperature and microwave heating did not alter the chemical structure of GSH molecules during microwave heating, respectively. Using the MA-MAEC technique, the iCrystal system yielded high quality GSH crystals in a rapid manner.

11.
Cell Rep ; 9(3): 829-41, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25437539

ABSTRACT

Ewing sarcoma (EWS) is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis). PARPi-induced cytotoxicity in EWS cells was 10- to 1,000-fold higher after administration of the DNA-damaging agents irinotecan or temozolomide. We developed an orthotopic EWS mouse model and performed pharmacokinetic and pharmacodynamic studies using three different PARPis that are in clinical development for pediatric cancer. Irinotecan administered on a low-dose, protracted schedule previously optimized for pediatric patients was an effective DNA-damaging agent when combined with PARPis; it was also better tolerated than combinations with temozolomide. Combining PARPis with irinotecan and temozolomide gave complete and durable responses in more than 80% of the mice.


Subject(s)
DNA Repair , Molecular Targeted Therapy , Sarcoma, Ewing/pathology , Animals , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Death/drug effects , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Synergism , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Irinotecan , Mice, Nude , Phthalazines/pharmacokinetics , Phthalazines/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide , Xenograft Model Antitumor Assays
12.
Nano Biomed Eng ; 6(4): 104-110, 2014.
Article in English | MEDLINE | ID: mdl-25745585

ABSTRACT

In this study, we demonstrated a unique application of our Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC) technique for the de-crystallization of uric acid crystals, which causes gout in humans when monosodium urate crystals accumulate in the synovial fluid found in the joints of bones. Given the shortcomings of the existing treatments for gout, we investigated whether the MA-MAEC technique can offer an alternative solution to the treatment of gout. Our technique is based on the use of metal nanoparticles (i.e., gold colloids) with low microwave heating to accelerate the de-crystallization process. In this regard, we employed a two-step process; (i) crystallization of uric acid on glass slides, which act as a solid platform to mimic a bone, (ii) de-crystallization of uric acid crystals on glass slides with the addition of gold colloids and low power microwave heating, which act as "nano-bullets" when microwave heated in a solution. We observed that the size and number of the uric acid crystals were reduced by >60% within 10 minutes of low power microwave heating. In addition, the use of gold colloids without microwave heating (i.e. control experiment) did not result in the de-crystallization of the uric acid crystals, which proves the utility of our MA-MAEC technique in the de-crystallization of uric acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...