Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
BMC Neurol ; 24(1): 271, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097695

ABSTRACT

BACKGROUND: Among ambulatory people with incomplete spinal cord injury (iSCI), balance deficits are a primary factor limiting participation in walking activities. There is broad recognition that effective interventions are needed to enhance walking balance following iSCI. Interventions that amplify self-generated movements (e.g., error augmentation) can accelerate motor learning by intensifying sensorimotor feedback and facilitating exploration of motor control strategies. These features may be beneficial for retraining walking balance after iSCI. We have developed a cable-driven robot that creates a movement amplification environment during treadmill walking. The robot applies a continuous, laterally-directed, force to the pelvis that is proportional in magnitude to real-time lateral velocity. Our purpose is to investigate the effects of locomotor training in this movement amplification environment on walking balance. We hypothesize that for ambulatory people with iSCI, locomotor training in a movement amplification environment will be more effective for improving walking balance and participation in walking activities than locomotor training in a natural environment (no applied external forces). METHODS: We are conducting a two-arm parallel-assignment intervention. We will enroll 36 ambulatory participants with chronic iSCI. Participants will be randomized into either a control or experimental group. Each group will receive 20 locomotor training sessions. Training will be performed in either a traditional treadmill environment (control) or in a movement amplification environment (experimental). We will assess changes using measures that span the International Classification of Functioning, Disability and Health (ICF) framework including 1) clinical outcome measures of gait, balance, and quality of life, 2) biomechanical assessments of walking balance, and 3) participation in walking activities quantified by number of steps taken per day. DISCUSSION: Training walking balance in people with iSCI by amplifying the individual's own movement during walking is a radical departure from current practice and may result in new strategies for addressing balance impairments. Knowledge gained from this study will expand our understanding of how people with iSCI improve walking balance and how an intervention targeting walking balance affects participation in walking activities. Successful outcomes could motivate development of clinically feasible tools to replicate the movement amplification environment within clinical settings. TRIAL REGISTRATION: NCT04340063.


Subject(s)
Gait , Spinal Cord Injuries , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology , Humans , Gait/physiology , Adult , Exercise Therapy/methods , Postural Balance/physiology , Walking/physiology , Male , Female , Robotics/methods , Single-Blind Method , Middle Aged , Locomotion/physiology
2.
J Neurophysiol ; 132(3): 781-790, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39081214

ABSTRACT

During visuomotor learning, improvements in motor performance accompany changes in how people use vision. However, the dependencies between altered visual reliance and improvements in motor skill is unclear. The present studies used an online sequence learning task to quantify how changing the availability of visual information affected motor skill learning (study 1) and how changing motor skill affected visual reliance (study 2). Participants used their keyboard to respond to targets falling vertically down a game screen. In study 1 (n = 49), the availability of visual information was altered by manipulating where the targets were visible on the screen. Three experimental groups practiced the task during full or limited vision conditions (when the targets were only visible in specific areas). We hypothesized that limiting visual information would reduce motor learning (i.e., the rate of improvement during training trial blocks). Instead, although participants performed worse during limited vision trials (P < 0.001), there was no difference in learning rate (P = 0.87). In study 2 (n = 119), all participants practiced the task with full vision and their visual reliance (i.e., their performance change between full and limited vision conditions) was quantified before and after training. We hypothesized that with motor learning, visual reliance on future targets would increase, whereas visual reliance on the current targets would decrease. The results of study 2 partially support our hypotheses with visual reliance decreasing for all visual areas (P < 0.001). Together, the results suggest changing motor skill alters how people use vision, but changing visual availability does not affect motor learning.NEW & NOTEWORTHY Previous research has established how people use visual information changes with motor learning. However, the dependencies of these two processes on each other are unclear. We find that limiting the availability of visual information degrades motor performance but not motor learning. We also find that motor learning reduces the impact of limiting the availability of visual information on motor performance. Together, these results suggest that how people use visual information depends on their motor skill.


Subject(s)
Learning , Motor Skills , Visual Perception , Humans , Male , Female , Learning/physiology , Motor Skills/physiology , Adult , Young Adult , Visual Perception/physiology , Psychomotor Performance/physiology , Vision, Ocular/physiology
3.
Front Hum Neurosci ; 18: 1343457, 2024.
Article in English | MEDLINE | ID: mdl-38445098

ABSTRACT

Performance in stair-climbing is largely associated with disruptions to mobility and community participation in children with cerebral palsy (CP). It is important to understand the nature of motor impairments responsible for making stairs a challenge in children with bilateral CP to clarify underlying causes of impaired mobility. In pediatric clinical populations, sensitive measurements of movement quality can be captured during the initial step of stair ascent. Thus, the purpose of this study was to quantify the lower limb joint moments of children with bilateral CP during the stance phases of a step-up task. Participants performed multiple stepping trials in a university gait laboratory. Outcome measures included extensor support moments (the sum of hip, knee, and ankle sagittal plane moments), hip abduction moments, and their timing. We recruited seven participants per group. We found that peak support and hip abduction moments were similar in the bilateral CP group compared to the typical development (TD) group. We also found that children with bilateral CP timed their peak moments closer together and increasingly depended on the hip joint to complete the task, especially in their more affected (MA) lower limb. Our investigation highlights some underlying causes that may make stair climbing a challenge for the CP population, including a loss of selective voluntary motor control (SVMC), and provides a possible treatment approach to strengthen lower limb muscles.

4.
PLoS One ; 19(2): e0291284, 2024.
Article in English | MEDLINE | ID: mdl-38363788

ABSTRACT

The impact of environmental uncertainty on locomotor adaptation remains unclear. Environmental uncertainty could either aid locomotor adaptation by prompting protective control strategies that stabilize movements to assist learning or impede adaptation by reducing error sensitivity and fostering hesitance to pursue corrective movements. To explore this, we investigated participants' adaptation to a consistent force field after experiencing environmental uncertainty in the form of unpredictable balance perturbations. We compared the performance of this group (Perturbation) to the adaptive performance of a group that did not experience any unpredictable perturbations (Non-Perturbation). Perturbations were delivered using a cable-driven robotic device applying lateral forces to the pelvis. We assessed whole-body center of mass (COM) trajectory (COM signed deviation), anticipatory postural adjustments (COM lateral offset), and first step width. The Perturbation group exhibited larger disruptions in COM trajectory (greater COM signed deviations) than the Non-Perturbation group when first walking in the force field. While the COM signed deviations of both groups decreased towards baseline values, only the Non-Perturbation group returned to baseline levels. The Perturbation groups COM signed deviations remained higher, indicating they failed to fully adapt to the force field before the end. The Perturbation group also did not adapt their COM lateral offset to counter the predictable effects of the force field as the Non-Perturbation group did, and their first step width increased more slowly. Our findings suggest that exposure to unpredictable perturbations impeded future sensorimotor adaptations to consistent perturbations.


Subject(s)
Postural Balance , Walking , Humans , Uncertainty , Movement , Learning , Biomechanical Phenomena , Adaptation, Physiological , Gait
5.
medRxiv ; 2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37905158

ABSTRACT

Performance in a single step has been suggested to be sensitive measure of movement quality in pediatric clinical populations. Although there is less information available in children with typical development, researchers have postulated the importance of analyzing the effect of body weight modulation on the initiation of stair ascent, especially during single limb stance where upright stability is most critical. The purpose of this study was to investigate the effect of load modulation from -20% to +15% of body weight on typical pediatric lower limb joint moments during a step-up task. Fourteen participants between 5-21 years with no known history of neurological or musculoskeletal concerns were recruited to perform multiple step-up trials. Peak extensor support and hip abduction moments were identified during the push-off and pull-up stance phases. Linear regressions were used to determine the relationship between peak moments and load. Mixed effects models were used to estimate the effect of load on hip, knee, and ankle percent contributions to peak support moments. There was a positive linear relationship between peak support moments and load in both stance phases, where these moments scaled with load. There was no relationship between peak hip abduction moments and load. While the ankle and knee were the primary contributors to the support moments, the hip contributed more than expected in the pull-up phase. Clinicians can use these results to contextualize movement differences in pediatric clinical populations including cerebral palsy and highlight potential target areas for rehabilitation for populations such as adolescent athletes.

6.
Exp Brain Res ; 241(10): 2535-2546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704876

ABSTRACT

People use vision to inform motor control strategies during walking. With practice performing a target stepping task, people shift their gaze farther ahead, transitioning from watching their feet contact the target to looking for future target locations. The shift in gaze focus suggests the role of vision in motor control changes from emphasizing feedback to feedforward control. The present study examines whether changing visual fixation location is accompanied by a similar change in reliance upon visual information. Twenty healthy young adults practiced stepping on moving targets projected on the surface of a treadmill. Periodically, participants' visual reliance was probed by hiding stepping targets which inform feedback or feedforward (targets < or > 1.5 steps ahead, respectively) motor control strategies. We calculated visual reliance as the increase in step error when targets were hidden. We hypothesized that with practice, participant reliance on feedback visual information would decrease and their reliance on feedforward visual information would increase. Contrary to our hypothesis, participants became significantly more reliant on feedback visual information with practice (p < 0.001) but their reliance on feedforward visual information did not change (p = 0.49). Participants' reliance on visual information increased despite looking significantly farther ahead with practice (p < 0.016). Together, these results suggest that participants fixated on feedback information less. However, changes in fixation pattern did not reduce their reliance upon feedback information as stepping performance still significantly decreased when feedback information was removed after training. These findings provide important context for how the role of vision in controlling walking changes with practice.


Subject(s)
Fixation, Ocular , Learning , Young Adult , Humans , Foot , Walking
7.
Front Neurol ; 14: 1146094, 2023.
Article in English | MEDLINE | ID: mdl-37325225

ABSTRACT

Background: There is evidence that ambulatory people with incomplete spinal cord injury (iSCI) have an impaired ability to control lateral motion of their whole-body center of mass (COM) during walking. This impairment is believed to contribute to functional deficits in gait and balance, however that relationship is unclear. Thus, this cross-sectional study examines the relationship between the ability to control lateral COM motion during walking and functional measures of gait and balance in people with iSCI. Methods: We assessed the ability to control lateral COM motion during walking and conducted clinical gait and balance outcome measures on 20 ambulatory adults with chronic iSCI (C1-T10 injury, American Spinal Injury Association Impairment Scale C or D). To assess their ability to control lateral COM motion, participants performed three treadmill walking trials. During each trial, real-time lateral COM position and a target lane were projected on the treadmill. Participants were instructed to keep their lateral COM position within the lane. If successful, an automated control algorithm progressively reduced the lane width, making the task more challenging. If unsuccessful, the lane width increased. The adaptive lane width was designed to challenge each participant's maximum capacity to control lateral COM motion during walking. To quantify control of lateral COM motion, we calculated lateral COM excursion during each gait cycle and then identified the minimum lateral COM excursion occurring during five consecutive gait cycles. Our clinical outcome measures were Berg Balance Scale (BBS), Timed Up and Go test (TUG), 10-Meter Walk Test (10MWT) and Functional Gait Assessment (FGA). We used a Spearman correlation analysis (ρ) to examine the relationship between minimum lateral COM excursion and clinical measures. Results: Minimum lateral COM excursion had significant moderate correlations with BBS (ρ = -0.54, p = 0.014), TUG (ρ = 0.59, p = 0.007), FGA (ρ = -0.59, p = 0.007), 10MWT-preferred (ρ = -0.59, p = 0.006) and 10MWT-fast (ρ = -0.68, p = 0.001). Conclusion: Control of lateral COM motion during walking is associated with a wide range of clinical gait and balance measures in people with iSCI. This finding suggests the ability to control lateral COM motion during walking could be a contributing factor to gait and balance in people with iSCI.

8.
Sci Rep ; 13(1): 6853, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100839

ABSTRACT

Humans continuously modulate their control strategies during walking based on their ability to anticipate disturbances. However, how people adapt and use motor plans to create stable walking in unpredictable environments is not well understood. Our purpose was to investigate how people adapt motor plans when walking in a novel and unpredictable environment. We evaluated the whole-body center of mass (COM) trajectory of participants as they performed repetitions of a discrete goal-directed walking task during which a laterally-directed force field was applied to the COM. The force field was proportional in magnitude to forward walking velocity and randomly directed towards either the right or left each trial. We hypothesized that people would adapt a control strategy to reduce the COM lateral deviations created by the unpredictable force field. In support of our hypothesis, we found that with practice the magnitude of COM lateral deviation was reduced by 28% (force field left) and 44% (force field right). Participants adapted two distinct unilateral strategies, implemented regardless of if the force field was applied to the right or to the left, that collectively created a bilateral resistance to the unpredictable force field. These strategies included an anticipatory postural adjustment to resist against forces applied to the left, and a more lateral first step to resist against forces applied to the right. In addition, during catch trials when the force field was unexpectedly removed, participants exhibited trajectories similar to baseline trials. These findings were consistent with an impedance control strategy that provides a robust resistance to unpredictable perturbations. However, we also found evidence that participants made predictive adaptations in response to their immediate experience that persisted for three trials. Due to the unpredictable nature of the force field, this predictive strategy would sometimes result in greater lateral deviations when the prediction was incorrect. The presence of these competing control strategies may have long term benefits by allowing the nervous system to identify the best overall control strategy to use in a novel environment.


Subject(s)
Adaptation, Physiological , Walking , Humans , Walking/physiology , Adaptation, Physiological/physiology , Acclimatization , Motivation , Biomechanical Phenomena/physiology
9.
J Neurophysiol ; 129(2): 298-306, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36542421

ABSTRACT

During human walking the whole body center-of-mass (COM) trajectory may be a control objective, a goal the central nervous system uses to plan and regulate movement. Our previous observation, that after practice walking in a novel laterally directed force field people adapt a COM trajectory similar to their normal trajectory, supports this idea. However, our prior work only presented data demonstrating changes in COM trajectory in response to a single force field. To evaluate whether this phenomena is robust, in the present study we present new data demonstrating that people adapt their COM trajectory in a similar manner when the direction of the external force field is changed resulting in drastically different lower limb joint dynamics. Specifically, we applied a continuous, left-directed force field (in the previous experiment the force field was applied to the right) to the COM as participants performed repeated trials of a discrete walking task. We again hypothesized that with practice walking in the force field people would adapt a COM trajectory that was similar to their baseline performance and exhibit aftereffects, deviation of their COM trajectory in the opposite direction of force field, when the field was unexpectedly removed. These hypotheses were supported and suggest that participants formed an internal model to control their COM trajectory. Collectively these findings demonstrate that people adapt their gait patterns to anticipate consistent aspects of the external environment. These findings suggest that this response is robust to force fields applied in multiple directions that may require substantially different neural control.NEW & NOTEWORTHY With experience people adapted a predictive internal model to control their whole body center-of-mass walking trajectory that anticipated the disruptive laterally directed forces of a novel and consistent external environment. Collectively these findings demonstrate that adaptation of gait to anticipate consistent aspects of the external environment is a response that is robust to force fields in multiple directions that require substantially different lower limb dynamics and neural control.


Subject(s)
Gait , Walking , Humans , Walking/physiology , Gait/physiology , Movement , Lower Extremity , Adaptation, Physiological/physiology , Biomechanical Phenomena/physiology
10.
J Exp Biol ; 225(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36124619

ABSTRACT

Foot placement can be selected to anticipate upcoming perturbations, but it is unclear how this anticipatory strategy is influenced by available response time or precise knowledge of the perturbation's characteristics. This study investigates anticipatory and reactive locomotor strategies for repeated underfoot perturbations with varying levels of temporal certainty, physical certainty, and available response time. Thirteen healthy adults walked with random underfoot perturbations from a mechanized shoe. Temporal certainty was challenged by presenting the perturbations with or without warning. Available response time was challenged by adjusting the timing of the warning before the perturbation. Physical certainty was challenged by making perturbation direction (inversion or eversion) unpredictable for certain conditions. Linear-mixed effects models assessed the effect of each condition on the percentage change of margin of stability and step width. For perturbations with one stride or less of response time, we observed few changes to step width or margin of stability. As response time increased to two strides, participants adopted wider steps in anticipation of the perturbation (P=0.001). Physical certainty had little effect on gait for the step of the perturbation, but participants recovered normal gait sooner when the physical nature of the perturbation was predictable (P<0.001). Despite having information about the timing and direction of upcoming perturbations, individuals do not develop perturbation-specific feedforward strategies. Instead, they use feedback control to recover normal gait after a perturbation. However, physical certainty appears to make the feedback controller more efficient and allows individuals to recover normal gait sooner.


Subject(s)
Gait , Postural Balance , Adult , Biomechanical Phenomena , Foot/physiology , Gait/physiology , Humans , Locomotion , Postural Balance/physiology , Walking/physiology
11.
J Neurophysiol ; 128(3): 445-454, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35822745

ABSTRACT

Vision plays a vital role in locomotor learning, providing feedback information to correct movement errors, and feedforward information to inform learned movement plans. Gaze behavior, or the distribution of fixation locations, can quantify how visual information is used during the motor learning process. How gaze behavior adapts during motor learning and in response to changing motor performance is poorly understood. This study examines if and how an individual's gaze behavior adapts during a sequence learning, target stepping task. We monitored the gaze behavior of 12 healthy young adults while they walked on a treadmill and attempted to precisely step on moving targets that were separated by variable distances (80%, 100%, and 120% of preferred step length). Participants completed a total of 11 trial blocks of 102 steps each. We hypothesized that both mean fixation distance would increase (participants would look farther ahead), and step error would decrease with experience. Following practice, participants significantly increased their fixation distance (P < 0.001) by 0.27 ± 0.18 steps and decreased their step error (P < 0.001) by 4.0 ± 1.7 cm, supporting our hypothesis. Our results suggest that early in the learning process, participants gaze behavior emphasized gathering visual information necessary for feedback motor control. As motor performance improved with experience, participants shifted their gaze fixation farther ahead placing greater emphasis on the visual information used for feedforward motor control. These findings provide important information about how gaze behavior changes in parallel with improvements in walking performance.NEW & NOTEWORTHY People consistently vary how they use visual information to inform walking. However, what drives this variation and how sampled visual information changes with locomotor learning is not well understood. Here, we find that gaze fixation locations moved farther ahead while step error decreases as participants practice a target stepping task. The results suggest that participants increasingly used a feedforward locomotor control strategy with practice.


Subject(s)
Fixation, Ocular , Psychomotor Performance , Humans , Learning , Psychomotor Performance/physiology , Vision, Ocular , Walking/physiology , Young Adult
12.
J Exp Biol ; 225(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35142362

ABSTRACT

Healthy young adults have a most preferred walking speed, step length and step width that are close to energetically optimal. However, people can choose to walk with a multitude of different step lengths and widths, which can vary in both energy expenditure and preference. Here, we further investigated step length-width preferences and their relationship to energy expenditure. In line with a growing body of research, we hypothesized that people's preferred stepping patterns would not be fully explained by metabolic energy expenditure. To test this hypothesis, we used a two-alternative forced-choice paradigm. Fifteen participants walked on an oversized treadmill. Each trial, participants performed two prescribed stepping patterns and then chose the pattern they preferred. Over time, we adapted the choices such that there was 50% chance of choosing one pattern over another (equally preferred). If people's preferences are based solely on metabolic energy expenditure, then these equally preferred stepping patterns should have equal energy expenditure. In contrast, we found that energy expenditure differed across equally preferred step length-width patterns (P<0.001). On average, longer steps with higher energy expenditure were preferred over shorter and wider steps with lower energy expenditure (P<0.001). We also asked participants to rank a set of shorter, wider and longer steps from most preferred to least preferred, and from most energy expended to least energy expended. Only 7/15 participants had the same rankings for their preferences and perceived energy expenditure. Our results suggest that energy expenditure is not the only factor influencing a person's conscious gait choices.


Subject(s)
Gait , Walking , Biomechanical Phenomena , Energy Metabolism , Exercise Test , Humans , Young Adult
14.
Article in English | MEDLINE | ID: mdl-33835919

ABSTRACT

Individuals with stroke often have difficulty modulating their lateral foot placement during gait, a primary strategy for maintaining lateral stability. Our purpose was to understand how individuals with and without stroke adapt their lateral foot placement when walking in an environment that alters center of mass (COM) dynamics and the mechanical requirement to maintain lateral stability. The treadmill walking environments included: 1) a Null Field- where no forces were applied, and 2) a Damping Field- where external forces opposed lateral COM velocity. To evaluate the response to the changes in environment, we quantified the correlation between lateral COM state and lateral foot placement (FP), as well as step width mean and variability. We hypothesized the Damping Field would produce a stabilizing effect and reduce both the COM-FP correlation strength and step width compared to the Null Field. We also hypothesized that individuals with stroke would have a significantly weaker COM-FP correlation than individuals without stroke. Surprisingly, we found no differences in COM-FP correlations between the Damping and Null Fields. We also found that compared to individuals without stroke in the Null Field, individuals with stroke had weaker COM-FP correlations (Paretic < Control: p =0.001 , Non-Paretic < Control: p =0.007 ) and wider step widths (p =0.001 ). Our results suggest that there is a post-stroke shift towards a non-specific lateral stabilization strategy that relies on wide steps that are less correlated to COM dynamics than in individuals without stroke.


Subject(s)
Foot , Stroke , Adaptation, Physiological , Biomechanical Phenomena , Gait , Humans , Postural Balance , Walking
15.
J Neuroeng Rehabil ; 18(1): 46, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33653370

ABSTRACT

BACKGROUND: Many people with incomplete spinal cord injury (iSCI) have the ability to maneuver while walking. However, neuromuscular impairments create challenges to maintain stability. How people with iSCI maintain stability during walking maneuvers is poorly understood. Thus, this study compares maneuver performance in varying external conditions between persons with and without iSCI to better understand maneuver stabilization strategies in people with iSCI. METHODS: Participants with and without iSCI walked on a wide treadmill and were prompted to perform lateral maneuvers between bouts of straight walking. Lateral force fields applied to the participants' center of mass amplified or attenuated the participants' movements, thereby increasing the capability of the study to capture behavior at varied levels of challenge to stability. RESULTS: By examining metrics of stability, step width, and center of mass dynamics, distinct strategies emerged following iSCI. The minimum margin of stability (MOSmin) on each step during maneuvers indicated persons with iSCI generally adapted to amplified and attenuated force fields with increased stability compared to persons without iSCI, particularly using increased step width and reduced center of mass excursion on maneuver initiation. In the amplified field, however, persons with iSCI had a reduced MOSmin when terminating a maneuver, likely due to the challenge of the force field opposing the necessary lateral braking. Persons without iSCI were more likely to rely on or oppose the force field when appropriate for movement execution. Compared to persons with iSCI, they reduced their MOSmin to initiate maneuvers in the attenuated and amplified fields and increased their MOSmin to arrest maneuvers in the amplified field. CONCLUSIONS: The different force fields were successful in identifying relatively subtle strategy differences between persons with and without iSCI. Specifically, persons with iSCI adopted increased step width and reduction in center of mass excursion to increase maneuver stability in the amplified field. The amplified field may provoke practice of stable and efficient initiation and arrest of walking maneuvers. Overall, this work allows better framing of the stability mechanisms used following iSCI to perform walking maneuvers.


Subject(s)
Adaptation, Physiological/physiology , Postural Balance/physiology , Spinal Cord Injuries/physiopathology , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Walking/physiology
16.
Front Rehabil Sci ; 2: 709420, 2021.
Article in English | MEDLINE | ID: mdl-36188795

ABSTRACT

Gait rehabilitation following incomplete spinal cord injury (iSCI) often aims to enhance speed and stability. Concurrently increasing both may be difficult though as certain stabilization strategies will be compromised at faster speeds. To evaluate the interaction between speed and lateral stability, we examined individuals with (n = 12) and without (n = 12) iSCI as they performed straight walking and lateral maneuvers at Preferred and Fast treadmill speeds. To better detect the effects of speed on stability, we challenged lateral stability with a movement amplification force field. The Amplification field, created by a cable-driven robot, applied lateral forces to the pelvis that were proportional to the real-time lateral center of mass (COM) velocity. While we expected individuals to maintain stability during straight walking at the Fast speed in normal conditions, we hypothesized that both groups would be less stable in the Amplification field at the Fast speed compared to the Preferred. However, we found no effects of speed or the interaction between speed and field on straight-walking stability [Lyapunov exponent or lateral margin of stability (MOS)]. Across all trials at the Fast speed compared to the Preferred, there was greater step width variability (p = 0.031) and a stronger correlation between lateral COM state at midstance and the subsequent lateral foot placement. These observations suggest that increased stepping variability at faster speeds may be beneficial for COM control. We hypothesized that during lateral maneuvers in the Amplification field, MOS on the Initiation and Termination steps would be smaller at the Fast speed than at the Preferred. We found no effect of speed on the Initiation step MOS within either field (p > 0.350) or group (p > 0.200). The Termination step MOS decreased at the Fast speed within the group without iSCI (p < 0.001), indicating a trade-off between lateral stability and forward walking speed. Unexpectedly, participants took more steps and time to complete maneuvers at the Fast treadmill speed in the Amplification field. This strategy prioritizing stability over speed was especially evident in the group with iSCI. Overall, individuals with iSCI were able to maintain lateral stability when walking fast in balance-challenging conditions but may have employed more cautious maneuver strategies.

17.
Article in English | MEDLINE | ID: mdl-33345030

ABSTRACT

Auditory feedback may provide the nervous system with valuable temporal (e. g., footstep sounds) and spatial (e.g., external reference sounds) information that can assist in the control of upright walking. As such, hearing loss may directly contribute to declines in mobility among older adults. Our purpose was to examine the impact of auditory feedback on the control of walking in older adults. Twenty older adults (65-86 years) with no diagnosed hearing loss walked on a treadmill for three sound conditions: Baseline, Ear Plugs, and White Noise. We hypothesized that in response to reduced temporal auditory feedback during the Ear Plugs and White Noise conditions, participants would adapt shorter and faster steps that are traditionally believed to increase mechanical stability. This hypothesis was not supported. Interestingly, we observed increases in step length (p = 0.047) and step time (p = 0.026) during the Ear Plugs condition vs. Baseline. Taking longer steps during the Ear Plugs condition may have increased ground reaction forces, thus allowing participants to sense footsteps via an occlusion effect. As a follow-up, we performed a Pearson's correlation relating the step length increase during the Ear Plugs condition to participants' scores on a clinical walking balance test, the Functional Gait Assessment. We found a moderate negative relationship (rho = -0.44, p = 0.055), indicating that participants with worse balance made the greatest increases in step length during the Ear Plugs condition. This trend suggests that participants may have actively sought auditory feedback with longer steps, sacrificing a more mechanically stable stepping pattern. We also hypothesized that reduced spatial localization feedback during the Ear Plugs and White Noise conditions would decrease control of center of mass (COM) dynamics, resulting in an increase in lateral COM excursion, lateral margin of stability, and maximum Lyapunov exponent. However, we found no main effects of auditory feedback on these metrics (p = 0.580, p = 0.896, and p = 0.056, respectively). Overall, these results suggest that during a steady-state walking task, healthy older adults can maintain walking control without auditory feedback. However, increases in step length observed during the Ear Plugs condition suggest that temporal auditory cues provide locomotor feedback that becomes increasingly valuable as balance deteriorates with age.

18.
PLoS One ; 15(7): e0235686, 2020.
Article in English | MEDLINE | ID: mdl-32658907

ABSTRACT

Previous research found that below-knee prosthesis users proactively increase their lateral margin-of-stability on their impaired side in anticipation of an impending perturbation when the timing is predictable and potentially directed toward the impaired limb. While knowledge of perturbation timing and direction influences proactive strategies, the consequences of such knowledge and anticipatory behavior on recovery from perturbations is unclear. This study characterized center-of-mass (CoM) dynamics of below-knee prosthesis users and non-impaired controls following a lateral perturbation when the perturbation direction is known but a priori knowledge of the timing of perturbation is either known or unknown. Across groups, CoM displacement during perturbation exposure increased when directed towards the impaired or non-dominant limb with no influence of timing knowledge. In addition, peak CoM displacement was less with known timing irrespective of the perturbation direction. Generally, the CoM displacement during perturbation exposure correlated well with the CoM medial-lateral velocity during unperturbed walking, supporting evidence that human response dynamics to lateral perturbations are influenced by the instantaneous state of the body's momentum.


Subject(s)
Artificial Limbs/psychology , Postural Balance , Walking/physiology , Adult , Biomechanical Phenomena , Case-Control Studies , Female , Humans , Leg/physiology , Male , Young Adult
19.
R Soc Open Sci ; 7(1): 190889, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32218932

ABSTRACT

During human walking, the centre of mass (COM) laterally oscillates, regularly transitioning its position above the two alternating support limbs. To maintain upright forward-directed walking, lateral COM excursion should remain within the base of support, on average. As necessary, humans can modify COM motion through various methods, including foot placement. How the nervous system controls these oscillations and the costs associated with control are not fully understood. To examine how lateral COM motions are controlled, healthy participants walked in a 'Movement Amplification' force field that increased lateral COM momentum in a manner dependent on the participant's own motion (forces were applied to the pelvis proportional to and in the same direction as lateral COM velocity). We hypothesized that metabolic cost to control lateral COM motion would increase with the gain of the field. In the Movement Amplification field, participants were significantly less stable than during baseline walking. Stability significantly decreased as the field gain increased. Participants also modified gait patterns, including increasing step width, which increased the metabolic cost of transport as the field gain increased. These results support previous research suggesting that humans modulate foot placement to control lateral COM motion, incurring a metabolic cost.

20.
Clin Biomech (Bristol, Avon) ; 71: 107-114, 2020 01.
Article in English | MEDLINE | ID: mdl-31710950

ABSTRACT

BACKGROUND: Following incomplete spinal cord injury, people often move slowly in an effort to maintain stability during walking maneuvers. Here we examine how maneuver speed impacts frontal-plane stability in people with incomplete spinal cord injury. We hypothesized that the challenge to control frontal-plane stability would increase with maneuver speed; specifically, the minimum lateral margin of stability would be smaller and the required coefficient of friction to avoid a slip would be greater during fast vs. preferred speed maneuvers. METHODS: We measured kinematics and ground reaction forces as 12 individuals with incomplete spinal cord injury performed side-step, lateral maneuvers at preferred and fast speeds. We examined four sequential steps: the Setup and Pushoff steps initiated the maneuver, and the Landing and Recovery steps arrested the maneuver. FINDINGS: Our hypotheses were partially supported. Maneuver time was shorter during fast vs. preferred speed maneuvers (p = 0.003). Minimum lateral margin of stability was smaller during the Setup step of fast vs. preferred speed maneuvers (p = 0.026). We found no differences in minimum lateral margin of stability between speeds for the Landing and Recovery steps (p > 0.05). The required coefficient of friction was not different between fast and preferred speed maneuvers (p = 0.087). INTERPRETATION: The greatest effect of increasing maneuver speed occurred during the Setup step; as speed increased, participants reduced their minimum lateral margin of stability ipsilateral to the maneuver direction. This action allowed maneuvers to be performed more quickly without requiring a greater lateral impulse during the Pushoff step. However, this strategy reduced passive stability.


Subject(s)
Gait , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Adolescent , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Postural Balance , Walking , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL