Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 18: 1320126, 2024.
Article in English | MEDLINE | ID: mdl-38529416

ABSTRACT

Introduction: Animals respond to various environmental cues. Animal behavior is complex, and behavior analysis can greatly help to understand brain function. Most of the available behavioral imaging setups are expensive, provide limited options for customization, and allow for behavioral imaging of one animal at a time. Methods: The current study takes advantage of adult zebrafish as a model organism to study behavior in a novel behavioral setup allowing one to concurrently image 8 adult zebrafish. Results: Our results indicate that adult zebrafish show a unique behavioral profile in response to visual stimuli such as moving lines. In the presence of moving lines, the fish spent more time exploring the tank and spent more time toward the edges of the tanks. In addition, the fish moved and oriented themselves against the direction of the moving lines, indicating a negative optomotor response (OMR). With repeated exposure to moving lines, we observed a reduced optomotor response in adult zebrafish. Discussion: Our behavioral setup is relatively inexpensive, provides flexibility in the presentation of various animated visual stimuli, and offers improved throughput for analyzing behavior in adult zebrafish. This behavioral setup shows promising potential to quantify various behavioral measures and opens new avenues to understand complex behaviors.

2.
Biomed Pharmacother ; 171: 116096, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185043

ABSTRACT

Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Zebrafish , Calcineurin Inhibitors , Drug Repositioning , Swimming
3.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745452

ABSTRACT

Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.

4.
Sci Rep ; 13(1): 8113, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208415

ABSTRACT

The analysis of mouse behavior is used in biomedical research to study brain function in health and disease. Well-established rapid assays allow for high-throughput analyses of behavior but have several drawbacks, including measurements of daytime behaviors in nocturnal animals, effects of animal handling, and the lack of an acclimation period in the testing apparatus. We developed a novel 8-cage imaging system, with animated visual stimuli, for automated analyses of mouse behavior in 22-h overnight recordings. Software for image analysis was developed in two open-source programs, ImageJ and DeepLabCut. The imaging system was tested using 4-5 month-old female wild-type mice and 3xTg-AD mice, a widely-used model to study Alzheimer's disease (AD). The overnight recordings provided measurements of multiple behaviors including acclimation to the novel cage environment, day and nighttime activity, stretch-attend postures, location in various cage areas, and habituation to animated visual stimuli. The behavioral profiles were different in wild-type and 3xTg-AD mice. AD-model mice displayed reduced acclimation to the novel cage environment, were hyperactive during the first hour of darkness, and spent less time at home in comparison to wild-type mice. We propose that the imaging system may be used to study various neurological and neurodegenerative disorders, including Alzheimer's disease.


Subject(s)
Alzheimer Disease , Mice , Animals , Female , Alzheimer Disease/diagnostic imaging , Mice, Transgenic , Motor Activity , Behavior, Animal , Software , Disease Models, Animal , Mice, Inbred C57BL
5.
Sci Rep ; 13(1): 3174, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823315

ABSTRACT

Brain function studies greatly depend on quantification and analysis of behavior. While behavior can be imaged efficiently, the quantification of specific aspects of behavior is labor-intensive and may introduce individual biases. Recent advances in deep learning and artificial intelligence-based tools have made it possible to precisely track individual features of freely moving animals in diverse environments without any markers. In the current study, we developed Zebrafish Larvae Position Tracker (Z-LaP Tracker), a modification of the markerless position estimation software DeepLabCut, to quantify zebrafish larval behavior in a high-throughput 384-well setting. We utilized the high-contrast features of our model animal, zebrafish larvae, including the eyes and the yolk for our behavioral analysis. Using this experimental setup, we quantified relevant behaviors with similar accuracy to the analysis performed by humans. The changes in behavior were organized in behavioral profiles, which were examined by K-means and hierarchical cluster analysis. Calcineurin inhibitors exhibited a distinct behavioral profile characterized by increased activity, acoustic hyperexcitability, reduced visually guided behaviors, and reduced habituation to acoustic stimuli. The developed methodologies were used to identify 'CsA-type' drugs that might be promising candidates for the prevention and treatment of neurological disorders.


Subject(s)
Behavior, Animal , Calcineurin , Larva , Zebrafish , Animals , Artificial Intelligence , Behavior, Animal/drug effects , Behavior, Animal/physiology , Deep Learning , Larva/drug effects , Disease Models, Animal
6.
Sci Rep ; 12(1): 6120, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449173

ABSTRACT

Repurposing FDA-approved drugs is an efficient and cost-effective approach in the development of therapeutics for a broad range of diseases. However, prediction of function can be challenging, especially in the brain. We screened a small-molecule library with FDA-approved drugs for effects on behavior. The studies were carried out using zebrafish larvae, imaged in a 384-well format. We found that various drugs affect activity, habituation, startle responses, excitability, and optomotor responses. The changes in behavior were organized in behavioral profiles, which were examined by hierarchical cluster analysis. One of the identified clusters includes the calcineurin inhibitors cyclosporine (CsA) and tacrolimus (FK506), which are immunosuppressants and potential therapeutics in the prevention of Alzheimer's disease. The calcineurin inhibitors form a functional cluster with seemingly unrelated drugs, including bromocriptine, tetrabenazine, rosiglitazone, nebivolol, sorafenib, cabozantinib, tamoxifen, meclizine, and salmeterol. We propose that drugs with 'CsA-type' behavioral profiles are promising candidates for the prevention and treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Animals , Calcineurin , Calcineurin Inhibitors/pharmacology , Cluster Analysis , Cyclosporine/pharmacology , Immunosuppressive Agents/pharmacology , Tacrolimus/pharmacology , Zebrafish
7.
Elife ; 102021 07 20.
Article in English | MEDLINE | ID: mdl-34282726

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Neurodevelopmental Disorders/metabolism , Neurogenesis/physiology , Xenopus laevis/metabolism , Animals , Humans , Matrix Metalloproteinase 9/genetics , Nervous System , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics , Neurons , Seizures
8.
Behav Brain Res ; 379: 112368, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31743730

ABSTRACT

Synthetic cathinones share potent sympathomimetic properties with amphetamines due to their shared phenethylamine backbone. Despite recent work focused on understanding the behavioral effects of synthetic cathinones, a systematic comparison of neuropharmacology, behavior, and physiological effects with other stimulants, has remained elusive. In the present study, we explore the behavioral effects of cathinones in crayfish, a model system which combines a well characterized behavioral paradigm for addiction-like behaviors, a modularly organized nervous system, the lack of a formal blood-brain barrier, and experimental tractability. The objective of this study was to characterize the psychomotor and rewarding effects of methylated cathinones (methylone, mephedrone), and their non ß-ketone substituted amphetamine analogs (4-methylmethamphetamine, 4-MMA and 3,4-methylenedioxymethamphetamine MDMA) in crayfish. Our results suggest that these drugs produce psychostimulation, which sensitizes upon repeated drug administration. Furthermore, crayfish demonstrated a conditioned substrate preference for mephedrone and 4-MMA drug-pairings at a 10 µg/g dose, a preference which persisted even through a series of extinction trials. Our study indicates that synthetic cathinones and substituted amphetamine analogues produce distinct behavioral effects in an invertebrate system which consists of a relatively simple neuronal organization. The present findings provide an evolutionary context to our understanding about how drugs of abuse initiate reward at levels far beyond those specific to humans.


Subject(s)
Alkaloids/pharmacology , Amphetamines/pharmacology , Behavior, Animal/drug effects , Central Nervous System Sensitization/drug effects , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological/drug effects , Motor Activity/drug effects , Reward , Alkaloids/administration & dosage , Amphetamines/administration & dosage , Amphetamines/analysis , Animals , Astacoidea , Central Nervous System Stimulants/administration & dosage , Male , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Phenethylamines/pharmacology
9.
Behav Processes ; 152: 47-53, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29549032

ABSTRACT

Results of recent work from our labs and those of others have broadened perspectives on addiction beyond a human-specific, cognitive phenomenon. Addictive plant alkaloids are defensive compounds which have arisen to counter herbivory. With insects the true targets of the coevolutionary arms race, humans may be little more than collateral damage when impacted by 'human' drugs of abuse. The present paper summarizes recent contributions, with a primary focus on our own research in crayfish, where we characterize the behavioral and neural consequences resulting from chronic and acute exposure to psychostimulant and addictive drugs. Substituted phenethylamines, like amphetamine and cocaine, exhibit a wide range of effects in crayfish with direct parallels to those described from mammalian preparations. Unconditioned effects include intoxication and psychostimulation, where repeated exposure is accompanied by tolerance and sensitization, respectively. Psychostimulants exhibit powerful reinforcing properties in conditioned place preference, subject to extinction and reinstatement. Crayfish readily self-administer amphetamines using instrumental learning approaches. With a nervous system modular and uniquely accessible to neural probing, crayfish offer unique opportunities for studying the basic biological mechanisms of drug effects, for exploring how the appetitive disposition is implemented, and for examining how this is related to the rewarding action of drugs of abuse.


Subject(s)
Astacoidea/physiology , Behavior, Addictive/physiopathology , Behavior, Animal/physiology , Dopamine Uptake Inhibitors/pharmacology , Learning/physiology , Reward , Animals , Astacoidea/drug effects , Behavior, Addictive/chemically induced , Behavior, Animal/drug effects , Learning/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...