Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Pancreas ; 53(7): e611-e616, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38696363

ABSTRACT

OBJECTIVES: Acute pancreatitis (AP) is a complex disease representing a significant portion of gastrointestinal-related hospitalizations in the U.S. Understanding risk factors of AP might provide attractive therapeutic targets. We evaluated hypophosphatemia a prognostic marker in AP. METHODS: We performed a retrospective review of electronic health records of patients with AP from 01/ 01/2012-12/31/2021 at Cedars-Sinai Medical Center with serum phosphate measured within 48 hours of admission. Multivariable logistic regression modeling was used to evaluate associations with ICU admission and AP severity. Multivariable log-linear modeling was employed to examine associations with length of stay (LOS). RESULTS: Of 1526 patients admitted for AP, 33% (499) had a serum phosphate level measured within 48 hours. Patients with hypophosphatemia were more likely to have ICU admission (adjusted odds ratio (AOR) = 4.57; 95% confidence interval (CI): 2.75-7.62; P < 0.001), have a longer hospital stay (log-LOS = 0.34; SE; 0.09; 95% CI: 0.17-0.52; P < 0.001), and have moderate or severe AP (AOR = 1.80; 95% CI: 1.16-2.80; P < 0.001) compared with those without hypophosphatemia. CONCLUSION: Serum phosphate is infrequently measured in patients with AP and shows promise as an early prognostic marker for outcomes of AP.


Subject(s)
Biomarkers , Hypophosphatemia , Length of Stay , Pancreatitis , Humans , Hypophosphatemia/blood , Hypophosphatemia/diagnosis , Female , Male , Retrospective Studies , Pancreatitis/blood , Pancreatitis/diagnosis , Middle Aged , Prognosis , Length of Stay/statistics & numerical data , Biomarkers/blood , Adult , Aged , Acute Disease , Severity of Illness Index , Phosphates/blood , Risk Factors , Intensive Care Units/statistics & numerical data , Logistic Models
2.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456505

ABSTRACT

A critical element of physician-scientist training is the development and practice of core competencies that promote success in research careers. The ability to develop compelling training and research proposals is one such foundational skill. The NIH Ruth L. Kirschstein National Research Service Award (NRSA) individual fellowship for dual-degree students (F30, F31, or F31-Diversity) creates an ideal opportunity to provide formal instruction in grant-writing skills to physician-scientists early in training. In the guided process of preparing a predoctoral fellowship application, students learn to formulate clear short- and long-term research and training goals; construct a comprehensive, well-reasoned, and rigorous proposal; become familiar with funding agency priorities; and gain strategic insights into the peer review system. Beyond building scientific writing skills, the application process for an NRSA F30 or F31 is an opportunity for trainees to strengthen mentor-mentee relationships, identify learning opportunities key to their scientific development, and build effective research and mentoring teams. These skills also apply to developing future postdoctoral mentored K applications or faculty research program grants. Here, we outline key features of the structured proposal development training developed for students in the Yale MD-PhD Program and review outcomes associated with its implementation.


Subject(s)
Awards and Prizes , Physicians , Humans , Fellowships and Scholarships , Mentors , Faculty
4.
Gastrointest Endosc ; 99(5): 822-825.e1, 2024 May.
Article in English | MEDLINE | ID: mdl-38103747

ABSTRACT

BACKGROUND AND AIMS: Plasma levels of renalase decrease in acute experimental pancreatitis. We aimed to determine if decreases in plasma renalase levels after ERCP predict the occurrence of post-ERCP pancreatitis (PEP). METHODS: In this prospective cohort study conducted at a tertiary hospital, plasma renalase was determined before ERCP (baseline) and at 30 and 60 minutes after ERCP. Native renalase levels, acidified renalase, and native-to-acidified renalase proportions were analyzed over time using a longitudinal regression model. RESULTS: Among 273 patients, 31 developed PEP. Only 1 PEP patient had a baseline native renalase >6.0 µg/mL, whereas 38 of 242 without PEP had a native renalase > 6.0 µg/mL, indicating a sensitivity of 97% (30/31) and specificity of 16% (38/242) in predicting PEP. Longitudinal models did not show differences over time between groups. CONCLUSIONS: Baseline native renalase levels are very sensitive for predicting PEP. Further studies are needed to determine the potential clinical role of renalase in predicting and preventing PEP.

5.
Pancreatology ; 23(2): 158-162, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36697349

ABSTRACT

BACKGROUND/OBJECTIVES: Severe acute pancreatitis is associated with significant morbidity and mortality. Identifying factors that affect the risk of developing severe disease could influence management. Plasma levels of renalase, an anti-inflammatory secretory protein, dramatically decrease in a murine acute pancreatitis model. We assessed this response in hospitalized acute pancreatitis patients to determine if reduced plasma renalase levels occur in humans. METHODS: Plasma samples were prospectively and sequentially collected from patients hospitalized for acute pancreatitis. Two forms of plasma renalase, native (no acid) and acidified, were measured by ELISA and RNLS levels were compared between healthy controls and patients with mild and severe disease (defined as APACHE-II score ≥7) using nonparametric statistical analysis. RESULTS: Control (33) and acute pancreatitis (mild, 230 (76.7%) and severe, 70 (23.3%) patients were studied. Acidified RNLS levels were lower in pancreatitis patients: Control: 10.1 µg/ml, Mild 5.1 µg/ml, Severe 6.0 µg/ml; p < 0.001. Native RNLS levels were increased in AP: Control: 0.4 µg/ml, Mild 0.9 µg g/ml, Severe 1.2 µg/ml p < 0.001; those with severe AP trended to have higher native RNLS levels than those with mild disease (p = 0.056). In patients with severe AP, higher APACHE-II scores at 24 h after admission correlated with lower acid-sensitive RNLS levels on admission (r = -0.31, p = 0.023). CONCLUSION: Low plasma acidified RNLS levels, and increased native RNLS levels are associated with AP. Additional studies should assess the clinical correlation between plasma RNLS levels and AP severity and outcomes.


Subject(s)
Pancreatitis , Humans , Animals , Mice , Pancreatitis/complications , Severity of Illness Index , Acute Disease , Monoamine Oxidase , Prognosis
6.
PLoS One ; 16(9): e0250539, 2021.
Article in English | MEDLINE | ID: mdl-34587190

ABSTRACT

Dysregulated expression of the secretory protein renalase can promote pancreatic ductal adenocarcinoma (PDAC) growth in animal models. We characterized renalase expression in premalignant and malignant PDAC tissue and investigated whether plasma renalase levels corresponded to clinical PDAC characteristics. Renalase immunohistochemistry was used to determine the presence and distribution of renalase in normal pancreas, chronic pancreatitis, PDAC precursor lesions, and PDAC tissues. Associations between pretreatment plasma renalase and PDAC clinical status were assessed in patients with varied clinical stages of PDAC and included tumor characteristics, surgical resection in locally advanced/borderline resectable PDAC, and overall survival. Data were retrospectively obtained and correlated using non-parametric analysis. Little to no renalase was detected by histochemistry in the normal pancreatic head in the absence of abdominal trauma. In chronic pancreatitis, renalase immunoreactivity localized to peri-acinar spindle-shaped cells in some samples. It was also widely present in PDAC precursor lesions and PDAC tissue. Among 240 patients with PDAC, elevated plasma renalase levels were associated with worse tumor characteristics, including greater angiolymphatic invasion (80.0% vs. 58.1%, p = 0.012) and greater node positive disease (76.5% vs. 56.5%, p = 0.024). Overall survival was worse in patients with high plasma renalase levels with median follow-up of 27.70 months vs. 65.03 months (p < 0.001). Renalase levels also predicted whether patients with locally advanced/borderline resectable PDAC underwent resection (AUC 0.674; 95%CI 0.42-0.82, p = 0.04). Overall tissue renalase was increased in both premalignant and malignant PDAC tissues compared to normal pancreas. Elevated plasma renalase levels were associated with advanced tumor characteristics, decreased overall survival, and reduced resectability in patients with locally advanced/borderline resectable PDAC. These studies show that renalase levels are increased in premalignant pancreatic tissues and that its levels in plasma correspond to the clinical behavior of PDAC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/pathology , Monoamine Oxidase/blood , Pancreatic Neoplasms/pathology , Up-Regulation , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/mortality , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Grading , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/mortality , Prognosis , Prospective Studies , Retrospective Studies , Survival Analysis , Young Adult , Pancreatic Neoplasms
7.
Cells ; 10(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34440775

ABSTRACT

The survival factor renalase (RNLS) is a recently discovered secretory protein with potent prosurvival and anti-inflammatory effects. Several evolutionarily conserved RNLS domains are critical to its function. These include a 20 aa site that encodes for its prosurvival effects. Its prosurvival effects are shown in GI disease models including acute cerulein pancreatitis. In rodent models of pancreatic cancer and human cancer tissues, increased RNLS expression promotes cancer cell survival but shortens life expectancy. This 37 kD protein can regulate cell signaling as an extracellular molecule and probably also at intracellular sites. Extracellular RNLS signals through a specific plasma membrane calcium export transporter; this interaction appears most relevant to acute injury and cancer. Preliminary studies using RNLS agonists and antagonists, as well as various preclinical disease models, suggest that the immunologic and prosurvival effects of RNLS will be relevant to diverse pathologies that include acute organ injuries and select cancers. Future studies should define the roles of RNLS in intestinal diseases, characterizing the RNLS-activated pathways linked to cell survival and developing therapeutic agents that can increase or decrease RNLS in relevant clinical settings.


Subject(s)
Gastrointestinal Diseases/enzymology , Gastrointestinal Tract/enzymology , Monoamine Oxidase/metabolism , Signal Transduction , Animals , Gastrointestinal Diseases/pathology , Gastrointestinal Tract/pathology , Humans , Protein Isoforms
8.
J Clin Invest ; 131(15)2021 08 02.
Article in English | MEDLINE | ID: mdl-34128834

ABSTRACT

Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.


Subject(s)
Acinar Cells/metabolism , Cholesterol/metabolism , Mannosephosphates/metabolism , Pancreas, Exocrine/metabolism , Pancreatitis/metabolism , Acinar Cells/pathology , Animals , Cholesterol/genetics , Disease Models, Animal , Humans , Mannosephosphates/genetics , Mice , Mice, Knockout , Pancreas, Exocrine/pathology , Pancreatitis/pathology , Transferases (Other Substituted Phosphate Groups)/deficiency , Transferases (Other Substituted Phosphate Groups)/metabolism
11.
Cell Mol Life Sci ; 77(9): 1811-1825, 2020 May.
Article in English | MEDLINE | ID: mdl-31363815

ABSTRACT

Premature intrapancreatic trypsinogen activation is widely regarded as an initiating event for acute pancreatitis. Previous studies have alternatively implicated secretory vesicles, endosomes, lysosomes, or autophagosomes/autophagolysosomes as the primary site of trypsinogen activation, from which a cell-damaging proteolytic cascade originates. To identify the subcellular compartment of initial trypsinogen activation we performed a time-resolution analysis of the first 12 h of caerulein-induced pancreatitis in transgenic light chain 3 (LC3)-GFP autophagy reporter mice. Intrapancreatic trypsin activity increased within 60 min and serum amylase within 2 h, but fluorescent autophagosome formation only by 4 h of pancreatitis in parallel with a shift from cytosolic LC3-I to membranous LC3-II on Western blots. At 60 min, activated trypsin in heavier subcellular fractions was co-distributed with cathepsin B, but not with the autophagy markers LC3 or autophagy protein 16 (ATG16). Supramaximal caerulein stimulation of primary pancreatic acini derived from LC3-GFP mice revealed that trypsinogen activation is independent of autophagolysosome formation already during the first 15 min of exposure to caerulein. Co-localization studies (with GFP-LC3 autophagosomes versus Ile-Pro-Arg-AMC trypsin activity and immunogold-labelling of lysosomal-associated membrane protein 2 [LAMP-2] versus trypsinogen activation peptide [TAP]) indicated active trypsin in autophagolysosomes only at the later timepoints. In conclusion, during the initiating phase of caerulein-induced pancreatitis, premature protease activation develops independently of autophagolysosome formation and in vesicles arising from the secretory pathway. However, autophagy is likely to regulate overall intracellular trypsin activity during the later stages of this disease.


Subject(s)
Autophagy , Ceruletide/toxicity , Pancreatitis/pathology , Trypsin/metabolism , Trypsinogen/metabolism , Animals , Autophagosomes/metabolism , Endosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Pancreatitis/chemically induced , Pancreatitis/metabolism , Secretory Vesicles/metabolism
12.
Pancreas ; 48(10): 1250-1258, 2019.
Article in English | MEDLINE | ID: mdl-31688587

ABSTRACT

A workshop on research gaps and opportunities for Precision Medicine in Pancreatic Disease was sponsored by the National Institute of Diabetes and Digestive Kidney Diseases on July 24, 2019, in Pittsburgh. The workshop included an overview lecture on precision medicine in cancer and 4 sessions: (1) general considerations for the application of bioinformatics and artificial intelligence; (2) omics, the combination of risk factors and biomarkers; (3) precision imaging; and (4) gaps, barriers, and needs to move from precision to personalized medicine for pancreatic disease. Current precision medicine approaches and tools were reviewed, and participants identified knowledge gaps and research needs that hinder bringing precision medicine to pancreatic diseases. Most critical were (a) multicenter efforts to collect large-scale patient data sets from multiple data streams in the context of environmental and social factors; (b) new information systems that can collect, annotate, and quantify data to inform disease mechanisms; (c) novel prospective clinical trial designs to test and improve therapies; and (d) a framework for measuring and assessing the value of proposed approaches to the health care system. With these advances, precision medicine can identify patients early in the course of their pancreatic disease and prevent progression to chronic or fatal illness.


Subject(s)
Biomedical Research , Pancreatic Diseases , Precision Medicine , Biomarkers , Computational Biology , Datasets as Topic , Deep Learning , Humans , Metabolomics , Pancreatic Diseases/diagnosis , Pancreatic Diseases/etiology , Pancreatic Diseases/therapy , Research
13.
Nat Genet ; 51(8): 1233-1243, 2019 08.
Article in English | MEDLINE | ID: mdl-31358993

ABSTRACT

Factors that underlie the clustering of metabolic syndrome traits are not fully known. We performed whole-exome sequence analysis in kindreds with extreme phenotypes of early-onset atherosclerosis and metabolic syndrome, and identified novel loss-of-function mutations in the gene encoding the pancreatic elastase chymotrypsin-like elastase family member 2A (CELA2A). We further show that CELA2A is a circulating enzyme that reduces platelet hyperactivation, triggers both insulin secretion and degradation, and increases insulin sensitivity. CELA2A plasma levels rise postprandially and parallel insulin levels in humans. Loss of these functions by the mutant proteins provides insight into disease mechanisms and suggests that CELA2A could be an attractive therapeutic target.


Subject(s)
Atherosclerosis/pathology , Insulin/blood , Islets of Langerhans/pathology , Metabolic Syndrome/pathology , Mutation , Pancreatic Elastase/blood , Pancreatic Elastase/genetics , Serine Endopeptidases/genetics , Adult , Age of Onset , Atherosclerosis/blood , Atherosclerosis/etiology , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Insulin Resistance , Islets of Langerhans/metabolism , Linkage Disequilibrium , Male , Metabolic Syndrome/blood , Metabolic Syndrome/etiology , Middle Aged , Pedigree , Platelet Activation
14.
Pancreas ; 48(6): 759-779, 2019 07.
Article in English | MEDLINE | ID: mdl-31206467

ABSTRACT

At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.


Subject(s)
Disease Models, Animal , Genetic Engineering/methods , Pancreas, Exocrine/pathology , Pancreatic Neoplasms/therapy , Pancreatitis/therapy , Acute Disease , Animals , Humans , Mice , Pancreas, Exocrine/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatitis/diagnosis , Pancreatitis/genetics , Rats
15.
Pancreas ; 48(4): 459-470, 2019 04.
Article in English | MEDLINE | ID: mdl-30973461

ABSTRACT

Acute pancreatitis (AP) is a potentially lethal inflammatory disease that lacks specific therapy. Damaged pancreatic acinar cells are believed to be the site of AP initiation. The primary function of these cells is the synthesis, storage, and export of digestive enzymes. Beginning in the endoplasmic reticulum and ending with secretion of proteins stored in zymogen granules, distinct pancreatic organelles use ATP produced by mitochondria to move and modify nascent proteins through sequential vesicular compartments. Compartment-specific accessory proteins concentrate cargo and promote vesicular budding, targeting, and fusion. The autophagy-lysosomal-endosomal pathways maintain acinar cell homeostasis by removing damaged/dysfunctional organelles and recycling cell constituents for substrate and energy. Here, we discuss studies in experimental and genetic AP models, primarily from our groups, which show that acinar cell injury is mediated by distinct mechanisms of organelle dysfunction involved in protein synthesis and trafficking, secretion, energy generation, and autophagy. These early AP events (often first manifest by abnormal cytosolic Ca signaling) in the acinar cell trigger the inflammatory and cell death responses of pancreatitis. Manifestations of acinar cell organelle disorders are also prominent in human pancreatitis. Our findings suggest that targeting specific mediators of organelle dysfunction could reduce disease severity.


Subject(s)
Acinar Cells/metabolism , Homeostasis , Pancreatitis/metabolism , Secretory Vesicles/metabolism , Acute Disease , Autophagy , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Humans , Lysosomes/metabolism , Pancreatitis/pathology
16.
Gastroenterology ; 154(3): 689-703, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29074451

ABSTRACT

BACKGROUND & AIMS: Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca2+, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. METHODS: Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. RESULTS: Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca2+ overload or through a Ca2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. CONCLUSIONS: In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Lipid Metabolism , Mitochondria/metabolism , Pancreas/metabolism , Pancreatitis/metabolism , Acute Disease , Animals , Arginine , Autophagy/drug effects , Bile Acids and Salts , Calcium Signaling , Ceruletide , Choline Deficiency/complications , Peptidyl-Prolyl Isomerase F , Cyclophilins/deficiency , Cyclophilins/genetics , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Ethionine , Genetic Predisposition to Disease , Humans , Lipid Metabolism/drug effects , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Proton-Translocating ATPases/metabolism , Pancreas/drug effects , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/pathology , Phenotype , Rats , Time Factors , Trehalose/pharmacology
17.
J Biol Chem ; 292(51): 21047-21059, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29042438

ABSTRACT

Acute pancreatitis is a disease associated with inflammation and tissue damage. One protein that protects against acute injury, including ischemic injury to both the kidney and heart, is renalase, which is secreted into the blood by the kidney and other tissues. However, whether renalase reduces acute injury associated with pancreatitis is unknown. Here, we used both in vitro and in vivo murine models of acute pancreatitis to study renalase's effects on this condition. In isolated pancreatic lobules, pretreatment with recombinant human renalase (rRNLS) blocked zymogen activation caused by cerulein, carbachol, and a bile acid. Renalase also blocked cerulein-induced cell injury and histological changes. In the in vivo cerulein model of pancreatitis, genetic deletion of renalase resulted in more severe disease, and administering rRNLS to cerulein-exposed WT mice after pancreatitis onset was protective. Because pathological increases in acinar cell cytosolic calcium levels are central to the initiation of acute pancreatitis, we also investigated whether rRNLS could function through its binding protein, plasma membrane calcium ATPase 4b (PMCA4b), which excretes calcium from cells. We found that PMCA4b is expressed in both murine and human acinar cells and that a PMCA4b-selective inhibitor worsens pancreatitis-induced injury and blocks the protective effects of rRNLS. These findings suggest that renalase is a protective plasma protein that reduces acinar cell injury through a plasma membrane calcium ATPase. Because exogenous rRNLS reduces the severity of acute pancreatitis, it has potential as a therapeutic agent.


Subject(s)
Monoamine Oxidase/metabolism , Pancreas/metabolism , Pancreatitis/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biomarkers/metabolism , Calcium Signaling/drug effects , Carbachol/pharmacology , Cell Line , Ceruletide/toxicity , Enzyme Activation/drug effects , Fluorescent Antibody Technique, Indirect , Gene Expression Regulation, Enzymologic/drug effects , Humans , Hypertension/etiology , Hypertension/prevention & control , Ligands , Membrane Transport Modulators/pharmacology , Mice , Mice, Knockout , Monoamine Oxidase/blood , Monoamine Oxidase/genetics , Monoamine Oxidase/therapeutic use , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/pathology , Plasma Membrane Calcium-Transporting ATPases/antagonists & inhibitors , Plasma Membrane Calcium-Transporting ATPases/chemistry , Plasma Membrane Calcium-Transporting ATPases/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/therapeutic use , Taurolithocholic Acid/analogs & derivatives , Taurolithocholic Acid/pharmacology
18.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28935577

ABSTRACT

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Subject(s)
Acinar Cells , Cell Culture Techniques , Pancreatitis , Acinar Cells/cytology , Acinar Cells/metabolism , Cadaver , Cells, Cultured , Humans , Pancreas/cytology , Pancreas/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Proteomics
19.
Cell Mol Gastroenterol Hepatol ; 4(2): 251-262, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28752114

ABSTRACT

Acute pancreatitis is currently the most common cause of hospital admission among all nonmalignant gastrointestinal diseases. To understand the pathophysiology of the disease and as a potential step toward developing targeted therapies, attempts to induce the disease experimentally began more than 100 years ago. Recent decades have seen progress in developing new experimental pancreatitis models as well as elucidating many underlying cell biological and pathophysiological disease mechanisms. Some models have been developed to reflect specific causes of acute pancreatitis in human beings. However, the paucity of data relating to the molecular mechanisms of human disease, the likelihood that multiple genetic and environmental factors affect the risk of disease development and its severity, and the limited information regarding the natural history of disease in human beings make it difficult to evaluate the value of disease models. Here, we provide an overview of key models and discuss our views on their strengths for characterizing cell biological disease mechanisms or for identifying potential therapeutic targets. We also acknowledge their limitations.

20.
Proc Natl Acad Sci U S A ; 114(27): 7148-7153, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28533369

ABSTRACT

Presenilin 1 (PS1), the catalytic subunit of the γ-secretase complex, cleaves ßCTF to produce Aß. We have shown that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 decreases Aß levels by increasing ßCTF degradation through autophagy. Here, we report the molecular mechanism by which PS1 modulates ßCTF degradation. We show that PS1 phosphorylated at Ser367, but not nonphosphorylated PS1, interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an antiamyloidogenic function, promoting autophagosome-lysosome fusion and increasing ßCTF degradation. Drugs designed to increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/genetics , Autophagosomes/metabolism , Lysosomes/metabolism , Presenilin-1/genetics , Animals , Annexin A2/metabolism , Autophagy/physiology , Brain/metabolism , Cell Line, Tumor , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neuroblastoma/metabolism , Neurons/metabolism , Phagosomes/metabolism , Phosphorylation , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL