Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Publication year range
1.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33792559

ABSTRACT

Scientific progress and discovery of preventions and cures for life-threatening diseases depend on the vitality of the biomedical research workforce. We analyzed the workforce of cancer researchers applying for and receiving R01 awards from the National Cancer Institute (NCI) from fiscal years 1990 to 2016, the last year prior to implementation of the Next Generation Researchers Initiative. Here we report that the NCI R01 Principal Investigator (PI) workforce expanded 1.4-fold and aged over this time frame. We tracked 9 age groups and found that the number of PIs in the 3 oldest groups increased dramatically, in contrast with the younger groups. Sustained increases in the number of funded older PIs stemmed from increases in the number of older PIs submitting applications, rather than higher funding rates for older PIs. The decline in the number of funded younger PIs was driven in part by (a) a marked increase in time from PhD degree to first R01 application and award, as well as (b) a decrease in retention of PIs in the funded R01 workforce beyond their first R01 award. The NCI is using these and other analyses to inform strategies and policies for attracting, supporting, and retaining meritorious early-career researchers.


Subject(s)
Biomedical Research/history , National Cancer Institute (U.S.)/history , Neoplasms , Research Personnel/history , Workforce/history , Awards and Prizes , History, 20th Century , History, 21st Century , Humans , United States
2.
Cytoskeleton (Hoboken) ; 72(7): 362-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26235381

ABSTRACT

Branched actin networks generated by the Arp2/3 complex provide the driving force for leading edge protrusion in migrating cells. We recently identified Arpin, a protein that inhibits the Arp2/3 complex in lamellipodia. Arpin is activated by the small GTPase Rac, which triggers lamellipodium formation, and thus Arpin renders protrusions unstable. A conserved role of Arpin is to induce migrating cells to turn in different migration models. Here we investigated the mechanism by which Arpin controls directional persistence. For this analysis, we segmented migration trajectories into alternating phases of active migration and pauses, based on a speed threshold. Regardless of the threshold value, Arpin induced more frequent pausing, during which the cell was more likely to change the direction of its migration. Arpin simultaneously acts on cell speed and directional persistence, which are strongly coupled parameters. Induction of frequent pausing by Arpin is consistent with Arpin circuitry: by inhibiting the Arp2/3 complex as a response to Rac activation, Arpin antagonizes a positive feedback loop that sustains protrusions at the leading edge and maintains active migration. We propose the 'duration of active migration' as a useful proxy to measure feedbacks associated with cell migration.


Subject(s)
Carrier Proteins/metabolism , Cell Movement/physiology , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Image Processing, Computer-Assisted
3.
Nat Protoc ; 9(8): 1931-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25033209

ABSTRACT

The mechanism by which cells control directional persistence during migration is a major question. However, the common index measuring directional persistence, namely the ratio of displacement to trajectory length, is biased, particularly by cell speed. An unbiased method is to calculate direction autocorrelation as a function of time. This function depends only on the angles of the vectors tangent to the trajectory. This method has not been widely used, because it is more difficult to compute. Here we discuss biases of the classical index and introduce a custom-made open-source computer program, DiPer, which calculates direction autocorrelation. In addition, DiPer also plots and calculates other essential parameters to analyze cell migration in two dimensions: it displays cell trajectories individually and collectively, and it calculates average speed and mean square displacements (MSDs) to assess the area explored by cells over time. This user-friendly program is executable through Microsoft Excel, and it generates plots of publication-level quality. The protocol takes ∼15 min to complete. We have recently used DiPer to analyze cell migration of three different mammalian cell types in 2D cultures: the mammary carcinoma cell line MDA-MB-231, the motile amoeba Dictyostelium discoideum and fish-scale keratocytes. DiPer can potentially be used not only for random migration in 2D but also for directed migration and for migration in 3D (direction autocorrelation only). Moreover, it can be used for any types of tracked particles: cellular organelles, bacteria and whole organisms.


Subject(s)
Cell Migration Assays/methods , Cell Movement , Software
5.
Nature ; 503(7475): 281-4, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24132237

ABSTRACT

Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cell Movement/genetics , Pseudopodia/genetics , Pseudopodia/metabolism , Signal Transduction , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Dictyostelium/genetics , Dictyostelium/metabolism , Embryo, Nonmammalian , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Proteins/genetics , Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Zebrafish/genetics
6.
Mol Biol Cell ; 22(2): 189-201, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21119010

ABSTRACT

The formin mDia2 mediates the formation of lamellipodia and filopodia during cell locomotion. The subcellular localization of activated mDia2 depends on interactions with actin filaments and the plasma membrane. We investigated the poorly understood mechanism of plasma membrane targeting of mDia2 and found that the entire N-terminal region of mDia2 preceding the actin-polymerizing formin homology domains 1 and 2 (FH1-FH2) module was potently targeted to the membrane. This localization was enhanced by Rif, but not by other tested small GTPases, and depended on a positively charged N-terminal basic domain (BD). The BD bound acidic phospholipids in vitro, suggesting that in vivo it may associate with the plasma membrane through electrostatic interactions. Unexpectedly, a fragment consisting of the GTPase-binding region and the diaphanous inhibitory domain (G-DID), thought to mediate the interaction with GTPases, was not targeted to the plasma membrane even in the presence of constitutively active Rif. Addition of the BD or dimerization/coiled coil domains to G-DID rescued plasma membrane targeting in cells. Direct binding of Rif to mDia2 N terminus required the presence of both G and DID. These results suggest that the entire N terminus of mDia2 serves as a coincidence detection module, directing mDia2 to the plasma membrane through interactions with phospholipids and activated Rif.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Female , Formins , GTP Phosphohydrolases/pharmacology , HeLa Cells , Humans , Microscopy, Confocal , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Protein Transport , Structure-Activity Relationship , rho GTP-Binding Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 102(5): 1424-9, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15671157

ABSTRACT

Homomeric and heteromeric interactions between the alphaIIb and beta3 transmembrane domains are involved in the regulation of integrin alphaIIbbeta3 function. These domains appear to interact in the inactivated state but separate upon integrin activation. Moreover, homomeric interactions may increase the level of alphaIIbbeta3 activity by competing for the heteromeric interaction that specifies the resting state. To test this model, a series of mutants were examined that had been shown previously to either enhance or disrupt the homomeric association of the alphaIIb transmembrane domain. One mutation that enhanced the dimerization of the alphaIIb transmembrane domain indeed induced constitutive alphaIIbbeta3 activation. However, a series of mutations that disrupted homodimerization also led to alphaIIbbeta3 activation. These results suggest that the homo- and heterodimerization motifs overlap in the alphaIIb transmembrane domain, and that mutations that disrupt the alphaIIb/beta3 transmembrane domain heterodimer are sufficient to activate the integrin. The data also imply a mechanism for alphaIIbbeta3 regulation in which the integrin can be shifted from its inactive to its active state by destabilizing an alphaIIb/beta3 transmembrane domain heterodimer and by stabilizing the resulting alphaIIb and beta3 transmembrane domain homodimers.


Subject(s)
Integrin beta3/physiology , Platelet Membrane Glycoprotein IIb/physiology , Animals , CHO Cells , Cloning, Molecular , Cricetinae , Dimerization , Immunohistochemistry , Integrin beta3/metabolism , Models, Molecular , Mutagenesis , Platelet Membrane Glycoprotein IIb/metabolism , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/metabolism
8.
J Biol Chem ; 279(25): 26666-73, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15067009

ABSTRACT

Homo- and hetero-oligomeric interactions between the transmembrane (TM) helices of integrin alpha and beta subunits may play an important role in integrin activation and clustering. As a first step to understanding these interactions, we used the TOXCAT assay to measure oligomerization of the wild-type alpha(IIb) TM helix and single-site TM domain mutants. TOXCAT measures the oligomerization of a chimeric protein containing a TM helix in the Escherichia coli inner membrane via the transcriptional activation of the gene for chloramphenicol acetyltransferase. We found the amount of chloramphenicol acetyltransferase induced by the wild-type alpha(IIb) TM helix was approximately half that induced by the strongly dimerizing TM helix of glycophorin A, confirming that the alpha(IIb) TM domain oligomerizes in biological membranes. Mutating each of the alpha(IIb) TM domain residues to either Ala, Leu, Ile, or Val revealed that a GXXXG motif mediates oligomerization. Further, we found that the residue preceding each glycine contributed to the oligomerization interface, as did the residue at position i + 4 after the second Gly of GXXXG. Thus, the sequence XXVGXXGGXXXLXX is critical for oligomerization of alpha(IIb) TM helix. These data were used to generate an atomic model of the alpha(IIb) homodimer, revealing a family of structures with right-handed crossing angles of 40 degrees to 60 degrees, consistent with a 4.0-residue periodicity, and with an interface rotated by 50 degrees relative to glycophorin A. Thus, although the alpha(IIb) TM helix makes use of the GXXXG framework, neighboring residues have evolved to engineer its dimerization interface, enabling it to subserve specific and specialized functions.


Subject(s)
Cell Membrane/metabolism , Platelet Membrane Glycoprotein IIb/chemistry , Amino Acid Motifs , Amino Acid Sequence , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Dimerization , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Escherichia coli/metabolism , Genetic Complementation Test , Glycine/chemistry , Glycophorins/chemistry , Models, Molecular , Models, Statistical , Molecular Sequence Data , Mutagenesis , Mutation , Plasmids/metabolism , Protein Structure, Tertiary , Transcriptional Activation , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...