Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(3): E215-E225, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117266

ABSTRACT

Immunometabolism research is uncovering the relationship between metabolic features and immune cell functions in physiological and pathological conditions. Normal pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus with immune homeostasis maintenance. Here, we determined the immunometabolic status of monocytes of pregnant women compared with nonpregnant controls and its impact on monocyte anti-inflammatory functions such as efferocytosis. Monocytes from pregnant women (16-20 wk) and nonpregnant age-matched controls were studied. Single cell-based metabolic assays using freshly isolated monocytes from both groups were carried out in parallel with functional assays ex vivo to evaluate monocyte efferocytic capacity. On the other hand, various in vitro metabolic assays with human monocytes or monocyte-derived macrophages were designed to explore the effect of trophoblast cells in the profiles observed. We found that pregnancy alters monocyte metabolism and function. An increased glucose dependency and enhanced efferocytosis were detected in monocytes from pregnant women at resting states, compared with nonpregnant controls. Furthermore, monocytes display a reduced glycolytic response when stimulated with lipopolysaccharide (LPS). The metabolic profiling of monocytes at this stage of pregnancy was comparable with the immunometabolic phenotypes of human monocytes treated in vitro with human first trimester trophoblast cell conditioned media. These findings suggest that immunometabolic mechanisms are involved in the functional shaping of monocytes during pregnancy with a contribution of trophoblast cells. Results provide new clues for future hypotheses regarding pregnancies complicated by metabolic disorders.NEW & NOTEWORTHY Immunometabolism stands as a novel perspective to understand the complex regulation of the immune response and to provide small molecule-based therapies. By applying this approach to study monocytes during pregnancy, we found that these cells have a unique activation pattern. They rely more on glycolysis and show increased efferocytosis/IL-10 production, but they do not have the typical proinflammatory responses. We also present evidence that trophoblast cells can shape monocytes into this distinct immunometabolic profile.


Subject(s)
Monocytes , Trophoblasts , Pregnancy , Humans , Female , Monocytes/metabolism , Trophoblasts/metabolism , Macrophages/metabolism , Pregnancy Trimester, First
2.
Am J Reprod Immunol ; 88(4): e13601, 2022 10.
Article in English | MEDLINE | ID: mdl-35810353

ABSTRACT

BACKGROUND: A tight immune and metabolic regulation underlies the early maternal-placental interaction to assist the energetic dynamic demands of the fetus throughout pregnancy. The vasoactive intestinal peptide (VIP) holds biochemical, metabolic and immune properties consistent with a regulatory role during pregnancy. AIM: Here we overview critical aspects of embryo implantation and placental development with special focus on the immune and metabolic effects of VIP expressed by decidual and trophoblast cells. CONTENT: During decidualization, endometrial stromal cells undergo reticular stress and trigger unfolded protein response (UPR) that enable expansion of their endoplasmic reticulum and immunomodulatory factor synthesis. These processes appear differentially affected in recurrent abortion and in vitro fertilization failure suggesting their relevance in reproductive pathologies. Similarly, defective placentation associates with altered immune, vascular and trophoblast interaction resulting in complicated pregnancies that threaten maternal and neonatal health and underlie metabolic programming of adult life. We discuss the most recent research on decidual, trophoblast and immune cell interaction on the light of VIP regulation. Its role in decidualization and UPR associated with a sterile inflammatory response and angiogenesis is discussed. Evidence on VIP modulation of cytotrophoblast cell function, metabolism and immune profile is revised as well as the shaping of decidual leukocyte phenotype and function from decidualization to term. IMPLICATIONS: The broad spectrum of effects of VIP from implantation to term in normal and pathological conditions summarized here might contribute to the identification of novel biomarkers for diagnosis and pharmacological targeting.


Subject(s)
Placenta , Vasoactive Intestinal Peptide , Biomarkers/metabolism , Decidua/metabolism , Embryo Implantation , Female , Humans , Placenta/metabolism , Placentation , Pregnancy , Stromal Cells/metabolism , Trophoblasts , Vasoactive Intestinal Peptide/metabolism
3.
Am J Reprod Immunol ; 87(1): e13423, 2022 01.
Article in English | MEDLINE | ID: mdl-33764560

ABSTRACT

PROBLEM: Decidualized cells display an active role during embryo implantation sensing blastocyst quality, allowing the implantation of normal developed blastocysts and preventing the invasion of impaired developed ones. Here, we characterized the immune microenvironment generated by decidualized cells in response to soluble factors secreted by blastocysts that shape the receptive milieu. METHOD OF STUDY: We used an in vitro model of decidualization based on the Human Endometrial Stromal Cells line (HESC) differentiated with medroxiprogesterone and dibutyryl-cAMP, then treated with human blastocysts-conditioned media (BCM) classified according to their quality. RESULTS: Decidualized cells treated with BCM from impaired developed blastocysts increased IL-1ß production. Next, we evaluated the ability of decidualized cells to modulate other mediators associated with menstruation as chemokines. Decidualized cells responded to stimulation with BCM from impaired developed blastocysts increasing CXCL12 expression and CXCL8 secretion. The modulation of these markers was associated with the recruitment and activation of neutrophils, while regulatory T cells recruitment was restrained. These changes were not observed in the presence of BCM from normal developed blastocysts. CONCLUSION: Soluble factors released by impaired developed blastocysts induce an exacerbated inflammatory response associated with neutrophils recruitment and activation, providing new clues to understand the molecular basis of the embryo-endometrial dialogue.


Subject(s)
Blastocyst/physiology , Decidua/metabolism , Embryo Implantation/physiology , Inflammation/metabolism , Stromal Cells/metabolism , Blastocyst/drug effects , Cell Line , Decidua/drug effects , Embryo Implantation/drug effects , Female , Humans , Medroxyprogesterone/administration & dosage , Stromal Cells/drug effects
4.
Front Immunol ; 11: 1571, 2020.
Article in English | MEDLINE | ID: mdl-32973738

ABSTRACT

Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14- immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.


Subject(s)
Decidua/physiology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Interleukin-10/metabolism , Monocytes/immunology , Monocytes/metabolism , Biomarkers , Cell Differentiation , Cell Line , Dendritic Cells/cytology , Endocytosis/immunology , Endometrium/cytology , Endometrium/physiology , Female , Flow Cytometry , Humans , Immunophenotyping , Lipopolysaccharides/immunology , Lymphocyte Culture Test, Mixed , Myeloid Cells/immunology , Myeloid Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
5.
Reproduction ; 159(4): R203-R211, 2020 04.
Article in English | MEDLINE | ID: mdl-31990665

ABSTRACT

Decidualization denotes the reprogramming of endometrial stromal cells that includes the secretion of different mediators like cytokines, chemokines, and the selective recruitment of immune cells. This physiological process involves changes in the secretome of the endometrial stromal cells leading to the production of immunomodulatory factors. The increased amount of protein secretion is associated with a physiological endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR), allowing the expansion of ER and the machinery to assist the protein folding. Notably, the signaling pathways involved in the ER stress and the UPR are interconnected with the onset of a sterile inflammatory response, as well as with angiogenesis. Both of these processes have a key role in decidualization and placentation, therefore, alterations in them could lead to pregnancy complications. In this review, we will discuss how the induction of ER stress and the UPR processes that accompanies the decidualization are associated with embryo implantation and whether they might condition pregnancy outcome. The ER stress activates/triggers sensing proteins which, among others, induces kinase/RNAse-TXNIP expression, activating the NLRP3 inflammasome. This multiprotein system allows caspase-1 activation, which catalyzes the cleavage of the inactive IL-1ß proform toward the mature secretory form, with pro-implantatory effects. However, the sterile inflammatory response should be later controlled in favor of a tolerogenic microenvironment to sustain pregnancy. In accordance, alterations of the ER stress and UPR processes can be reflected in recurrent implantation failures (RIF), recurrent pregnancy loss (RPL), or complications associated with deficient placentation, such as preeclampsia (PE).


Subject(s)
Decidua/physiology , Endoplasmic Reticulum Stress , Unfolded Protein Response , Embryo Implantation , Female , Humans , Interleukin-1/physiology , Menstrual Cycle , MicroRNAs/metabolism
6.
PLoS One ; 14(3): e0212911, 2019.
Article in English | MEDLINE | ID: mdl-30822345

ABSTRACT

In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.


Subject(s)
Acetylcholine/metabolism , Dendritic Cells/immunology , Lung Injury/immunology , Animals , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Disease Models, Animal , Disease Progression , Female , Histocompatibility Antigens Class II/metabolism , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lung/cytology , Lung/immunology , Lung/pathology , Lung Injury/blood , Lung Injury/diagnosis , Mice , Ovalbumin/immunology , Primary Cell Culture , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
7.
Front Immunol ; 10: 2907, 2019.
Article in English | MEDLINE | ID: mdl-31969877

ABSTRACT

Uterine receptivity and embryo implantation are two main processes that need a finely regulated balance between pro-inflammatory and tolerogenic mediators to allow a successful pregnancy. The neuroimmune peptide vasoactive intestinal peptide (VIP) is a key regulator, and it is involved in the induction of regulatory T cells (Tregs), which are crucial in both processes. Here, we analyzed the ability of endogenous and exogenous VIP to sustain a tolerogenic microenvironment during the peri-implantation period, particularly focusing on Treg recruitment. Wild-type (WT) and VIP-deficient mice [heterozygous (HT, +/-), knockout (KO, -/-)], and FOXP3-knock-in-GFP mice either pregnant or in estrus were used. During the day of estrus, we found significant histological differences between the uterus of WT mice vs. VIP-deficient mice, with the latter exhibiting undetectable levels of FOXP3 expression, decreased expression of interleukin (IL)-10, and vascular endothelial growth factor (VEGF)c, and increased gene expression of the Th17 proinflammatory transcription factor RORγt. To study the implantation window, we mated WT and VIP (+/-) females with WT males and observed altered FOXP3, VEGFc, IL-10, and transforming growth factor (TGF)ß gene expression at the implantation sites at day 5.5 (d5.5), demonstrating a more inflammatory environment in VIP (+/-) vs. VIP (+/+) females. A similar molecular profile was observed at implantation sites of WT × WT mice treated with VIP antagonist at d3.5. We then examined the ability GFP-sorted CD4+ cells from FOXP3-GFP females to migrate toward conditioned media (CM) obtained from d5.5 implantation sites cultured in the absence/presence of VIP or VIP antagonist. VIP treatment increased CD4+FOXP3+ and decreased CD4+ total cell migration towards implantation sites, and VIP antagonist prevented these effects. Finally, we performed adoptive cell transfer of Tregs (sorted from FOXP3-GFP females) in VIP-deficient-mice, and we observed that FOXP3-GFP cells were mainly recruited into the uterus/implantation sites compared to all other tested tissues. In addition, after Treg transfer, we found an increase in IL-10 expression and VEGFc in HT females and allowed embryo implantation in KO females. In conclusion, VIP contributes to a local tolerogenic response necessary for successful pregnancy, preventing the development of a hostile uterine microenvironment for implantation by the selective recruitment of Tregs during the peri-implantation period.


Subject(s)
Embryo Implantation/immunology , Placenta/immunology , T-Lymphocytes, Regulatory/immunology , Uterus/immunology , Vasoactive Intestinal Peptide/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cellular Microenvironment , Female , Forkhead Transcription Factors/immunology , Interleukin-10/immunology , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Pregnancy , Vascular Endothelial Growth Factor A/immunology
8.
Mol Cell Endocrinol ; 460: 63-72, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28689770

ABSTRACT

The decidualization process involves phenotype and functional changes on endometrial cells and the modulation of mediators with immunoregulatory properties as the vasoactive intestinal peptide (VIP). We investigate VIP contribution to the decidualization program and to immunoregulation throughout the human embryo implantation process. The decidualization of Human endometrial stromal cell line (HESC) with Medroxyprogesterone-dibutyryl-cAMP increased VIP/VPAC-receptors system. In fact, VIP could induce decidualization increasing differentiation markers (IGFBP1, PRL, KLF13/KLF9 ratio, CXCL12, CXCL8 and CCL2) and allowing Blastocyst-like spheroids (BLS) invasion in an in vitro model of embryo implantation. Focus on the tolerogenic effects, decidualized cells induced a semi-mature profile on maternal dendritic cells; restrained CD4+ cells recruitment while increased regulatory T-cells recruitment. Interestingly, the human blastocyst conditioned media from developmentally impaired embryos diminished the invasion and T-regulatory cells recruitment in these settings. These evidences suggest that VIP contributes to the implantation process inducing decidualization, allowing BLS invasion and favoring a tolerogenic micro-environment.


Subject(s)
Decidua/metabolism , Embryo Implantation/immunology , Vasoactive Intestinal Peptide/metabolism , Biomarkers/metabolism , Blastocyst/cytology , Cell Line , Cellular Microenvironment/drug effects , Culture Media, Conditioned/pharmacology , Embryo Implantation/drug effects , Endometrium/cytology , Female , Humans , Immune Tolerance , Models, Biological , Stromal Cells/drug effects , Stromal Cells/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism
9.
Hum Reprod ; 27(9): 2598-606, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22718280

ABSTRACT

BACKGROUND: Dendritic cells (DCs), which are biased toward a tolerogenic profile, play a pivotal role in tissue-remodeling processes and angiogenesis at the maternal-fetal interface. Here, we analyzed the effect of trophoblast cells on the functional profile of DCs to gain insight on the tolerogenic mechanisms underlying the human placental-maternal dialog at early stages of gestation. METHODS: DCs were differentiated from peripheral blood monocytes obtained from fertile women (n = 21), in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor during 5 days in culture. Then, DCs were cultured with trophoblast cells (Swan-71 cell line obtained from normal cytotrophoblast, at 7 weeks) for 24 h and for an additional 24 h in the absence or presence of lipopolysaccharide (LPS) from Escherichia coli. DCs were recovered and used for flow cytometry, enzyme-linked immunosorbent assay, RT-PCR and suppression and migration assays. RESULTS: Trophoblast cells significantly prevented the increase in CD83 expression induced by LPS without affecting the expression of CD86, CD40 and human leukocyte antigen-DR (P < 0.05). Trophoblast cells significantly decreased the production of IL-12p70 and tumor necrosis factor-α, while it increased the production of IL-10 (P < 0.05). No changes were observed in the production of IL-6 and monocyte chemotactic protein-1. The culture of DCs with trophoblast cells, also suppressed the stimulation of the allogeneic response triggered by LPS (P < 0.05). Conditioned DCs were able to increase the frequency of CD4 + CD25 + Foxp3 cells and this effect was accompanied by an increase in indoleamine 2, 3-dioxygenase expression in DCs (P < 0.05). CONCLUSIONS: The interaction of DCs with trophoblast cells promotes the differentiation of DCs into cells with a predominantly tolerogenic profile that could contribute to a tolerogenic microenvironment at the maternal-fetal interface.


Subject(s)
Dendritic Cells/cytology , Gene Expression Regulation , Trophoblasts/metabolism , Antigens, CD/biosynthesis , B7-2 Antigen/biosynthesis , CD40 Antigens/biosynthesis , Cell Differentiation , Cell Line , Cells, Cultured , Female , Flow Cytometry/methods , Fluorescein-5-isothiocyanate , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunoglobulins/biosynthesis , Interleukin-4/metabolism , Lipopolysaccharides/metabolism , Membrane Glycoproteins/biosynthesis , Models, Biological , Neovascularization, Pathologic , CD83 Antigen
10.
J Neuroimmunol ; 236(1-2): 47-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21665296

ABSTRACT

Dendritic cells (DCs) are highly specialized antigen-presenting cells with a unique ability to activate resting T lymphocytes. Acetylcholine (ACh) is the primary parasympathetic neurotransmitter and also a non-neural paracrine factor produced by different cells. Here, we analyzed the expression of the cholinergic system in DCs. We found that DCs express the muscarinic receptors M(3), M(4) and M(5), as well as the enzymes responsible for the synthesis and degradation of ACh, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively. Differentiation of DCs in the presence of the cholinergic agonist carbachol, the synthetic analog of ACh, resulted in an increased expression of HLA-DR and CD86 and the stimulation of TNF-α and IL-8 production. All these effects were prevented by atropine, a muscarinic ACh receptor (mAChR) antagonist. Carbachol, was also able to modulate the function of DCs when added after the differentiation is accomplished; it increased the expression of HLA-DR, improved the T cell priming ability of DCs, and stimulated the production of TNF-α but not IL-12 or IL-10. By contrast, carbachol significantly inhibited the stimulation of HLA-DR expression and the enhancement in the T cell priming ability of DCs triggered by LPS. Interestingly, the TNF-α antagonist etanercept completely prevented the increased expression of HLA-DR induced by carbachol, suggesting that it promotes the phenotypic maturation of DCs by stimulating the production of TNF-α. ACh induced similar effects than carbachol; it stimulated the expression of HLA-DR and the production of TNF-α, while inhibiting the stimulation of HLA-DR expression and IL-12 production triggered by LPS. Similarly, neostigmine, an inhibitor of AChE, also stimulated the expression of HLA-DR and the production of TNF-α by DCs while inhibiting the production of TNF-α and IL-12 triggered by LPS. These results support the existence of an autocrine/paracrine loop through which ACh modulates the function of DCs.


Subject(s)
Acetylcholine/physiology , Cholinergic Agonists/pharmacology , Cholinergic Antagonists/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/physiology , Acetylcholinesterase/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Choline O-Acetyltransferase/physiology , Dendritic Cells/metabolism , Humans , Male , Receptors, Muscarinic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...