Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 34(3): 351-371, 2023 02.
Article in English | MEDLINE | ID: mdl-36063005

ABSTRACT

This study investigated the release characteristics of curcumin (CUR)-loaded switchable poly(methyl methacrylate)-co-poly(N,N-diethylaminoethyl methacrylate) (PMMA-co-PDEAEMA) membranes following the application of various stimuli, as well as the platform's applicability in wound dressing and tissue engineering applications. The free-radical polymerization method was used to synthesize the PMMA-co-PDEAEMA copolymer. The drug-loaded nanofibrous membrane with electric potential (EP)-, CO2-, and pH-responsive properties was developed by the electrospinning of PMMA-co-PDEAEMA and CUR. The resulted structure was characterized by a scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy and wide-angle X-ray scattering measurements. The release characteristics of the CUR-loaded wound covering were analyzed in various simulated environments at varying voltages, alternated CO2/N2 gas bubbling, and at two different pH values; the results demonstrated high drug release controllability. Loaded CUR displayed high stability and better solubility compared with free CUR. The CUR-loaded tissue also exhibited high antibacterial activity against Escherichia coli and staphylococcus aureus bacteria. In addition, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted high biocompatibility of up to 95% in the CUR-loaded membrane. This platform could be a promising candidate for usage in tissue engineering and medical applications such as targeted drug delivery, biodetection, reversible cell capture-and-release systems, and biosensors.


Subject(s)
Curcumin , Nanofibers , Polymethyl Methacrylate , Nanofibers/chemistry , Carbon Dioxide , Curcumin/pharmacology , Curcumin/chemistry , Hydrogen-Ion Concentration
2.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208039

ABSTRACT

Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 µm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.


Subject(s)
Cellulose/chemistry , Nanowires/chemistry , Polymers/chemistry , Silver/chemistry , Wearable Electronic Devices , Humans , Infrared Rays , Microscopy, Electrochemical, Scanning/methods , Skin Temperature , X-Ray Diffraction/methods
3.
J Biomater Appl ; 35(1): 135-145, 2020 07.
Article in English | MEDLINE | ID: mdl-32295469

ABSTRACT

Electrospinning polyurethane has been utilized as skin wound dressing for protecting skin wounds from infection and thus facilitating their healings, but also limited by its imperfect biocompatibility, mechanical and antibacterial properties. This paper presents our study on the addition of graphene oxide to electrospinning polyurethane for improved properties, as well as its in vitro characterization. Polyurethane/graphene oxide wound dressing was electrospun with varying amount of graphene oxide (from 0.0% to 2.0%); and in vitro tests was carried out to characterize the wound dressing properties and performance from the structural, mechanical, and biological perspectives. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to confirm the interaction between graphene oxide particles and polyurethane fibers, while the scanning electron microscopy images further illustrated that the wound dressing was of a porous structure with fibre diameters depending on the amount of graphene oxide added; specifically, 20 to 180 nm were for composite polyurethane/graphene oxide fibers and 600 to 900 nm for pure polyurethane. Our results also revealed that the hydrophilicity and swelling properties of the wound dressing could be regulated by the amount of graphene oxide added to the polyurethane/graphene oxide composites. Mechanical, antibacterial, and cytotoxicity properties of the composite polyurethane/graphene oxide wound dressing were examined with the results illustrating that the addition of graphene oxide could improve the properties of the electrospun wound dressing. Combined together, our study illustrates that electrospinning polyurethane/graphene oxide composite is promising as skin wound dressing.


Subject(s)
Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Graphite/chemistry , Polyurethanes/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cells, Cultured , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Graphite/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Wound Healing/drug effects
4.
Appl Biochem Biotechnol ; 191(2): 567-578, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31823274

ABSTRACT

Creating scaffolds for skin tissue engineering remain challenging in terms of their mechanical and biological properties. In this paper, we present a study on the nanocomposite polyurethane (PU)/polycaprolactone (PCL) scaffolds with graphene oxide (GO), which were fabricated by using electrospinning method, for potential skin tissue engineering. For this, homogenous and soft PU nanofibers containing varying percent of polycaprolactone (12% and 15%) and nano GO (0.5-4%) were electrospun, respectively, and then characterized by different techniques/assays in vitro. For the scaffold characterization, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used. The SEM results show the spun scaffolds have 3D porous structure (90%) with the fiber diameter increased with the GO concentration, while the FTIR results confirmed the presence of PU, PCL, and Go in the scaffolds. Also, the biocompatibility, via the cytotoxicity, of the scaffolds was examined by MTT assay with the human skin fibroblast cells, along with their wettability in terms of contact angle. Our results show that the scaffolds are biocompatible to the skin fibroblast cell, illustrating their potential use in skin tissue engineering. Also, our results illustrate that the addition of GO to the PU/PCL composite can increase the wettability (or hydrophilicity) and biocompatibility of scaffolds. Combined together, the nanocomposite PU/PCL scaffolds with GO are promising as biocompatible constructs for skin tissue engineering.


Subject(s)
Graphite/chemistry , Nanocomposites/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Fibroblasts , Humans , Microscopy, Electron, Scanning , Nanofibers/chemistry , Porosity , Skin
5.
J Funct Biomater ; 10(2)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117313

ABSTRACT

: Nanofibrous-based pH sensors have shown promise in a wide range of industrial and medical applications due to their fast response time and good mechanical properties. In the present study, we fabricated pH-sensitive sensors of nanofibrous membranes by electrospinning polyurethane (PU)/poly 2-acrylamido-2-methylpropanesulfonic acid (PAMPS)/graphene oxide (GO) with indicator dyes. The morphology of the electrospun nanofibers was examined using scanning electron microscopy (SEM). The effect of hydrophilic polymer ratio and concentration of GO on the sensing response time was investigated. The sensitivity of the membranes was studied over a wide pH range (1-8) in solution tests, with color change measured by calculating total color difference using UV-vis spectroscopy. The membranes were also subjected to vapor tests at three different pH values (1, 4, 8). SEM results show the successful fabrication of bimodal fiber diameter distributions of PU (mean fiber diameter 519 nm) and PAMPS (mean fiber diameter 78 nm). Sensing response time decreased dramatically with increasing concentrations of PAMPS and GO. The hybrid hydrophobic/hydrophilic/GO nanofibrous membranes are capable of instantly responding to changes in solution pH as well as detecting pH changes in chemical vapor solution in as little as 7 s.

6.
Chem Commun (Camb) ; 54(61): 8478-8481, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30003210

ABSTRACT

We report a membrane that can be reversibly switched between a hydrophilic state and a hydrophobic state simply by alternately bubbling CO2 into and passing electric potential (EP) through a solution in contact with the membrane. The prepared membrane could be effectively used for oil/water separation.

7.
J Sep Sci ; 39(24): 4835-4840, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27790835

ABSTRACT

We describe the synthesis of a layered zinc hydroxide-dodecyl sulfate organic-inorganic hybrid nanocomposite as a new solid-phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide-dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69-3.2 ng/L and 10-500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o-, p-, and m-xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2-7.3% and 4.2-11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...