Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919890

ABSTRACT

Influenza A viruses (IAV) of subtype H9N2, endemic in world-wide poultry holdings, are reported to cause spill-over infections to pigs and humans and have also contributed substantially to recent reassortment-derived pre-pandemic zoonotic viruses of concern, such as the Asian H7N9 viruses. Recently, a H9N2 bat influenza A virus was found in Egyptian fruit bats (Rousettus aegyptiacus), raising the question of whether this bat species is a suitable host for IAV. Here, we studied the susceptibility, pathogenesis and transmission of avian and bat-related H9N2 viruses in this new host. In a first experiment, we oronasally inoculated six Egyptian fruit bats with an avian-related H9N2 virus (A/layer chicken/Bangladesh/VP02-plaque/2016 (H9N2)). In a second experiment, six Egyptian fruit bats were inoculated with the newly discovered bat-related H9N2 virus (A/bat/Egypt/381OP/2017 (H9N2)). While R. aegyptiacus turned out to be refractory to an infection with H9N2 avian-type, inoculation with the bat H9N2 subtype established a productive infection in all inoculated animals with a detectable seroconversion at day 21 post-infection. In conclusion, Egyptian fruit bats are most likely not susceptible to the avian H9N2 subtype, but can be infected with fruit bat-derived H9N2. H9-specific sero-reactivities in fruit bats in the field are therefore more likely the result of contact with a bat-adapted H9N2 strain.


Subject(s)
Chiroptera/virology , Disease Resistance/immunology , Influenza A Virus, H9N2 Subtype/immunology , Orthomyxoviridae Infections , Animals , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology
2.
NPJ Vaccines ; 5(1): 40, 2020.
Article in English | MEDLINE | ID: mdl-32435514

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 are a major threat for poultry holdings worldwide, here especially the zoonotic Asian H5N1 viruses. These HPAIVs have caused more than 500 fatal spillover infections from poultry to humans, with a looming danger of a new pandemic by establishing human-to-human transmissions. Besides culling measures in infected farms in endemic areas, vaccination is the major tool against HPAIV. However, the mainly used inactivated preparations have several limitations, like application to the individual animal by injection and a reduced efficiency. Here we present a modified live influenza vaccine prototype, which is based on the H17N10 bat influenza virus. The new chimeric vaccine strain R65mono/H17N10 was able to provide full protection against a lethal challenge infection with HPAIV H5N1 of juvenile and subadult chickens, as well as ferrets after oronasal immunization. In addition, the H5 vaccine prototype cannot reassort with avian influenza viruses and therefore is a promising tool against HPAIV H5 infection, allowing new vaccination strategies for efficient disease control.

3.
Viruses ; 12(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32093076

ABSTRACT

In 2012 and 2013, the genomic sequences of two novel influenza A virus (IAV) subtypes, designated H17N10 and H18N11, were identified via next-generation sequencing in the feces of the little yellow-shouldered fruit bat (Sturnira lilium) and the flat-faced fruit-eating bat (Artibeus planirostris), respectively. The pathogenesis caused by these viruses in their respective host species is currently insufficiently understood, which is primarily due to the inability to obtain and keep these bat species under appropriate environmental and biosafety conditions. Seba's short-tailed bats (Carollia perspicillata), in contrast, are close relatives and a natural H18N11 reservoir species, with the advantage of established animal husbandry conditions in academic research. To study viral pathogenesis in more detail, we here oro-nasally inoculated Seba's short-tailed bats with the bat IAV H18N11 subtype. Following inoculation, bats appeared clinically healthy, but the histologic examination of tissues revealed a mild necrotizing rhinitis. Consistently, IAV-matrix protein and H18-RNA positive cells were seen in lesioned respiratory and olfactory nasal epithelia, as well as in intestinal tissues. A RT-qPCR analysis confirmed viral replication in the conchae and intestines as well as the presence of viral RNA in the excreted feces, without horizontal transmission to naïve contact animals. Moreover, all inoculated animals seroconverted with low titers of neutralizing antibodies.


Subject(s)
Antibodies, Viral/blood , Chiroptera/virology , Influenza A virus/pathogenicity , Orthomyxoviridae Infections/virology , Virus Replication , Animals , Antibodies, Neutralizing/blood , Feces/virology , Host Specificity , Influenza A virus/classification , Influenza A virus/physiology , Intestines/cytology , Intestines/virology , Mouth/virology , Nasal Mucosa/pathology , Nasal Mucosa/virology , Nose/virology , Rhinitis/pathology , Rhinitis/virology
4.
Nat Microbiol ; 4(12): 2298-2309, 2019 12.
Article in English | MEDLINE | ID: mdl-31527796

ABSTRACT

Major histocompatibility complex class II (MHC-II) molecules of multiple species function as cell-entry receptors for the haemagglutinin-like H18 protein of the bat H18N11 influenza A virus, enabling tropism of the viruses in a potentially broad range of vertebrates. However, the function of the neuraminidase-like N11 protein is unknown because it is dispensable for viral infection or the release of H18-pseudotyped viruses. Here, we show that infection of mammalian cells with wild-type H18N11 leads to the emergence of mutant viruses that lack the N11 ectodomain and acquired mutations in H18. An infectious clone of one such mutant virus, designated rP11, appeared to be genetically stable in mice and replicated to higher titres in mice and cell culture compared with wild-type H18N11. In ferrets, rP11 antigen and RNA were detected at low levels in various tissues, including the tonsils, whereas the wild-type virus was not. In Neotropical Jamaican fruit bats, wild-type H18N11 was found in intestinal Peyer's patches and was shed to high concentrations in rectal samples, resulting in viral transmission to naive contact bats. Notably, rP11 also replicated efficiently in bats; however, only restored full-length N11 viruses were transmissible. Our findings suggest that wild-type H18N11 replicates poorly in mice and ferrets and that N11 is a determinant for viral transmission in bats.


Subject(s)
Chiroptera/virology , Influenza A virus/physiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae/physiology , Animals , Cell Line , Ferrets/virology , HEK293 Cells , Host Specificity , Humans , Influenza A virus/pathogenicity , Mammals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neuraminidase/chemistry , Neuraminidase/genetics , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , Receptor, Interferon alpha-beta/genetics , Receptors, Interferon/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...