Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 15(1): 279-286, 2022 01.
Article in English | MEDLINE | ID: mdl-34463026

ABSTRACT

Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study.


Subject(s)
Combined Modality Therapy , Infusions, Intra-Arterial , Ischemic Stroke/drug therapy , Animals , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/pharmacology , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Piperidines/administration & dosage , Piperidines/pharmacology , Thiazoles/administration & dosage , Thiazoles/pharmacology , Treatment Outcome , Verapamil/pharmacology
2.
Transl Stroke Res ; 12(1): 72-86, 2021 02.
Article in English | MEDLINE | ID: mdl-32253702

ABSTRACT

The extracellular matrix fragment perlecan domain V is neuroprotective and functionally restorative following experimental stroke. As neurogenesis is an important component of chronic post-stroke repair, and previous studies have implicated perlecan in developmental neurogenesis, we hypothesized that domain V could have a broad therapeutic window by enhancing neurogenesis after stroke. We demonstrated that domain V is chronically increased in the brains of human stroke patients, suggesting that it is present during post-stroke neurogenic periods. Furthermore, perlecan deficient mice had significantly less neuroblast precursor cells after experimental stroke. Seven-day delayed domain V administration enhanced neurogenesis and restored peri-infarct excitatory synaptic drive to neocortical layer 2/3 pyramidal neurons after experimental stroke. Domain V's effects were inhibited by blockade of α2ß1 integrin, suggesting the importance of α2ß1 integrin to neurogenesis and domain V neurogenic effects. Our results demonstrate that perlecan plays a previously unrecognized role in post-stroke neurogenesis and that delayed DV administration after experimental stroke enhances neurogenesis and improves recovery in an α2ß1 integrin-mediated fashion. We conclude that domain V is a clinically relevant neuroprotective and neuroreparative novel stroke therapy with a broad therapeutic window.


Subject(s)
Brain/metabolism , Heparan Sulfate Proteoglycans/biosynthesis , Neurogenesis/physiology , Neuroprotection/physiology , Stroke/metabolism , Animals , Brain/drug effects , Brain/pathology , Cells, Cultured , Heparan Sulfate Proteoglycans/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Neuroprotection/drug effects , Organ Culture Techniques , Protein Domains , Stroke/pathology , Stroke/prevention & control
3.
J Neurointerv Surg ; 10(1): 29-33, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28031354

ABSTRACT

BACKGROUND: Nitroglycerin (also known as glyceryl trinitrate (GTN)), a vasodilator best known for treatment of ischemic heart disease, has also been investigated for its potential therapeutic benefit in ischemic stroke. The completed Efficacy of Nitric Oxide in Stroke trial suggested that GTN has therapeutic benefit with acute (within 6 hours) transdermal systemic sustained release therapy. OBJECTIVE: To examine an alternative use of GTN as an acute therapy for ischemic stroke following successful recanalization. METHODS: We administered GTN IA following transient middle cerebral artery occlusion in mice. Because no standard dose of GTN is available following emergent large vessel occlusion, we performed a dose-response (3.12, 6.25, 12.5, and 25 µg/µL) analysis. Next, we looked at blood perfusion (flow) through the middle cerebral artery using laser Doppler flowmetry. Functional outcomes, including forced motor movement rotor rod, were assessed in the 3.12, 6.25, and 12.5 µg/µL groups. Histological analysis was performed using cresyl violet for infarct volume, and glial fibrillary activating protein (GFAP) and NeuN immunohistochemistry for astrocyte activation and mature neuron survival, respectively. RESULTS: Overall, we found that acute post-stroke IA GTN had little effect on vessel dilatation after 15 min. Functional analysis showed a significant difference between GTN (3.12 and 6.25 µg/µL) and control at post-stroke day 1. Histological measures showed a significant reduction in infarct volume and GFAP immunoreactivity and a significant increase in NeuN. CONCLUSIONS: These results demonstrate that acute IA GTN is neuroprotective in experimental ischemic stroke and warrants further study as a potentially new stroke therapy.


Subject(s)
Brain Ischemia/drug therapy , Infusions, Intra-Arterial , Nitroglycerin/administration & dosage , Stroke/drug therapy , Vasodilator Agents/administration & dosage , Animals , Brain Ischemia/blood , Infusions, Intra-Arterial/methods , Laser-Doppler Flowmetry/methods , Male , Mice , Mice, Inbred C57BL , Stroke/blood , Treatment Outcome
4.
Biochem Biophys Res Commun ; 468(1-2): 14-20, 2015.
Article in English | MEDLINE | ID: mdl-26549228

ABSTRACT

HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha/metabolism , Insulin-Secreting Cells/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Co-Repressor Proteins , Glucose/metabolism , HeLa Cells , Hepatocyte Nuclear Factor 1-alpha/chemistry , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Insulin/metabolism , Mice , Mutation , Protein Interaction Domains and Motifs , Protein Interaction Maps , Transcription, Genetic , Transcriptional Activation
5.
PLoS One ; 9(11): e110956, 2014.
Article in English | MEDLINE | ID: mdl-25372388

ABSTRACT

The virulence protein YopM of the plague bacterium Yersinia pestis has different dominant effects in liver and spleen. Previous studies focused on spleen, where YopM inhibits accumulation of inflammatory dendritic cells. In the present study we focused on liver, where PMN function may be directly undermined by YopM without changes in inflammatory cell numbers in the initial days of infection, and foci of inflammation are easily identified. Mice were infected with parent and ΔyopM-1 Y. pestis KIM5, and effects of YopM were assessed by immunohistochemistry and determinations of bacterial viable numbers in organs. The bacteria were found associated with myeloid cells in foci of inflammation and in liver sinusoids. A new in-vivo phenotype of YopM was revealed: death of inflammatory cells, evidenced by TUNEL staining beginning at d 1 of infection. Based on distributions of Ly6G(+), F4/80(+), and iNOS(+) cells within foci, the cells that were killed could have included both PMNs and macrophages. By 2 d post-infection, YopM had no effect on distribution of these cells, but by 3 d cellular decomposition had outstripped acute inflammation in foci due to parent Y. pestis, while foci due to the ΔyopM-1 strain still contained many inflammatory cells. The destruction depended on the presence of both PMNs in the mice and YopM in the bacteria. In mice that lacked the apoptosis mediator caspase-3 the infection dynamics were novel: the parent Y. pestis was limited in growth comparably to the ΔyopM-1 strain in liver, and in spleen a partial growth limitation for parent Y. pestis was seen. This result identified caspase-3 as a co-factor or effector in YopM's action and supports the hypothesis that in liver YopM's main pathogenic effect is mediated by caspase-3 to cause apoptosis of PMNs.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Caspase 3/metabolism , Liver/metabolism , Spleen/metabolism , Yersinia pestis , Animals , Caspase 3/genetics , Cell Death , Disease Models, Animal , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Inflammation/immunology , Inflammation/metabolism , Liver/immunology , Liver/microbiology , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Nitric Oxide Synthase Type II/metabolism , Plague/immunology , Plague/metabolism , Plague/microbiology , Plague/pathology , Spleen/microbiology , Virulence Factors , Yersinia pestis/pathogenicity
6.
Microbiology (Reading) ; 160(Pt 2): 396-405, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24222617

ABSTRACT

YadB and YadC are putative trimeric autotransporters present only in the plague bacterium Yersinia pestis and its evolutionary predecessor, Yersinia pseudotuberculosis. Previously, yadBC was found to promote invasion of epithelioid cells by Y. pestis grown at 37 °C. In this study, we found that yadBC also promotes uptake of 37 °C-grown Y. pestis by mouse monocyte/macrophage cells. We tested whether yadBC might be required for lethality of the systemic stage of plague in which the bacteria would be pre-adapted to mammalian body temperature before colonizing internal organs and found no requirement for early colonization or growth over 3 days. We tested the hypothesis that YadB and YadC function on ambient temperature-grown Y. pestis in the flea vector or soon after infection of the dermis in bubonic plague. We found that yadBC did not promote uptake by monocyte/macrophage cells if the bacteria were grown at 28 °C, nor was there a role of yadBC in colonization of fleas by Y. pestis grown at 21 °C. However, the presence of yadBC did promote recoverability of the bacteria from infected skin for 28 °C-grown Y. pestis. Furthermore, the gene for the proinflammatory chemokine CXCL1 was upregulated in expression if the infecting Y. pestis lacked yadBC but not if yadBC was present. Also, yadBC was not required for recoverability if the bacteria were grown at 37 °C. These findings imply that thermally induced virulence properties dominate over effects of yadBC during plague but that yadBC has a unique function early after transmission of Y. pestis to skin.


Subject(s)
Adhesins, Bacterial/biosynthesis , Monocytes/immunology , Monocytes/microbiology , Yersinia pestis/radiation effects , Animals , Bacterial Load , Cells, Cultured , Disease Models, Animal , Mice , Phenotype , Plague/microbiology , Plague/pathology , Skin/microbiology , Skin/pathology , Temperature , Yersinia pestis/isolation & purification , Yersinia pestis/physiology
7.
Article in English | MEDLINE | ID: mdl-23248776

ABSTRACT

YopM is one of the six "effector Yops" of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24-48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16-18 h p.i. in mice infected systemically with 10(6) bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b(+) cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b(+) cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Early Growth Response Protein 1/antagonists & inhibitors , Plague/pathology , Virulence Factors/metabolism , Yersinia pestis/pathogenicity , Animals , Bone Marrow/immunology , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Early Growth Response Protein 1/biosynthesis , Female , Gene Expression Profiling , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred C57BL , Microarray Analysis , Plague/microbiology , Spleen/immunology , Time Factors
8.
Article in English | MEDLINE | ID: mdl-16754972

ABSTRACT

Hepatocyte nuclear factor 1beta (HNF1beta) is a member of the POU transcription-factor family and binds the target DNA as a dimer with nanomolar affinity. The HNF1beta-DNA complex has been prepared and crystallized by hanging-drop vapor diffusion in 6%(v/v) PEG 300, 5%(w/v) PEG 8000, 8%(v/v) glycerol and 0.1 M Tris pH 8.0. The crystals diffracted to 3.2 A (93.9% completeness) using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group R3, with unit-cell parameters a = b = 172.69, c = 72.43 A. A molecular-replacement solution has been obtained and structure refinement is in progress. This structure will shed light on the molecular mechanism of promoter recognition by HNF1beta and the molecular basis of the disease-causing mutations found in it.


Subject(s)
DNA/chemistry , Hepatocyte Nuclear Factor 1-beta/chemistry , Crystallization/methods , DNA/metabolism , Hepatocyte Nuclear Factor 1-beta/metabolism , Protein Binding , Solvents , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...