Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 53(4): e2149702, 2023 04.
Article in English | MEDLINE | ID: mdl-36722608

ABSTRACT

Psoriasis is a chronic inflammatory skin disease with an autoimmune component and associated with joint inflammation in up to 30% of cases. To investigate autoreactive T cells, we developed an imiquimod-induced psoriasis-like inflammation model in K5-mOVA.tg C57BL/6 mice expressing ovalbumin (OVA) on the keratinocyte membrane, adoptively transferred with OT-I OVA-specific CD8+ T cells. We evaluated the expansion of OT-I CD8+ T cells and their localization in skin, blood, and spleen. scRNA-seq and TCR sequencing data from patients with psoriatic arthritis were also analyzed. In the imiquimod-treated K5-mOVA.tg mouse model, OT-I T cells were markedly expanded in the skin and blood at early time points. OT-I T cells in the skin showed mainly CXCR3+ effector memory phenotype, whereas in peripheral blood there was an expansion of CCR4+ CXCR3+ OT-I cells. At a later time point, expanded OVA-specific T-cell population was found in the spleen. In patients with psoriatic arthritis, scRNA-seq and TCR sequencing data showed clonal expansion of CCR4+ TCM cells in the circulation and further expansion in the synovial fluid. Importantly, there was a clonotype overlap between CCR4+ TCM in the peripheral blood and CD8+ T-cell effectors in the synovial fluid. This mechanism could play a role in the generation and spreading of autoreactive T cells to the synovioentheseal tissues in psoriasis patients at risk of developing psoriatic arthritis.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Skin Diseases , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Imiquimod , Mice, Inbred C57BL , Inflammation , Receptors, Antigen, T-Cell/genetics , Receptors, CCR4
2.
iScience ; 25(10): 105042, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36124235

ABSTRACT

Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.

3.
J Leukoc Biol ; 106(1): 147-160, 2019 07.
Article in English | MEDLINE | ID: mdl-30900780

ABSTRACT

TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.


Subject(s)
Toll-Like Receptor 4/physiology , Toll-Like Receptor 9/physiology , Animals , Autoimmune Diseases/immunology , Cytokines/biosynthesis , DNA-Binding Proteins/physiology , Endocytosis , Granulins/physiology , HMGB1 Protein/physiology , Humans , Membrane Glycoproteins/physiology , Receptors, Interleukin-1/physiology , Signal Transduction , Transcription Factors/physiology
4.
Front Immunol ; 9: 1484, 2018.
Article in English | MEDLINE | ID: mdl-29997628

ABSTRACT

Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.

5.
Mediators Inflamm ; 2015: 145305, 2015.
Article in English | MEDLINE | ID: mdl-26451077

ABSTRACT

A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFß priming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFß signaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.


Subject(s)
Endotoxins/pharmacology , MicroRNAs/metabolism , Phagocytes/drug effects , Phagocytes/metabolism , Cell Line , Cells, Cultured , Chromatin Immunoprecipitation , Enzyme-Linked Immunosorbent Assay , Humans , Immunoprecipitation , Interleukin-10/pharmacology , MicroRNAs/genetics , Monocytes/drug effects , Monocytes/metabolism , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...