Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Microbio Robot ; 20(1): 2, 2024.
Article in English | MEDLINE | ID: mdl-38616892

ABSTRACT

The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated. Supplementary Information: The online version contains supplementary material available at 10.1007/s12213-024-00165-0.

2.
J R Soc Interface ; 21(213): 20240078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593842

ABSTRACT

Biofilms are responsible for most chronic infections and are highly resistant to antibiotic treatments. Previous studies have demonstrated that periodic dosing of antibiotics can help sensitize persistent subpopulations and reduce the overall dosage required for treatment. Because the dynamics and mechanisms of biofilm growth and the formation of persister cells are diverse and are affected by environmental conditions, it remains a challenge to design optimal periodic dosing regimens. Here, we develop a computational agent-based model to streamline this process and determine key parameters for effective treatment. We used our model to test a broad range of persistence switching dynamics and found that if periodic antibiotic dosing was tuned to biofilm dynamics, the dose required for effective treatment could be reduced by nearly 77%. The biofilm architecture and its response to antibiotics were found to depend on the dynamics of persister cells. Despite some differences in the response of biofilm governed by different persister switching rates, we found that a general optimized periodic treatment was still effective in significantly reducing the required antibiotic dose. As persistence becomes better quantified and understood, our model has the potential to act as a foundation for more effective strategies to target bacterial infections.


Subject(s)
Bacteria , Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms
3.
Nat Commun ; 15(1): 3640, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684714

ABSTRACT

Careful consideration of how we approach design is crucial to all areas of biotechnology. However, choosing or developing an effective design methodology is not always easy as biology, unlike most areas of engineering, is able to adapt and evolve. Here, we put forward that design and evolution follow a similar cyclic process and therefore all design methods, including traditional design, directed evolution, and even random trial and error, exist within an evolutionary design spectrum. This contrasts with conventional views that often place these methods at odds and provides a valuable framework for unifying engineering approaches for challenging biological design problems.


Subject(s)
Directed Molecular Evolution , Directed Molecular Evolution/methods , Bioengineering/methods , Biotechnology/methods , Biological Evolution , Synthetic Biology/methods
4.
Sci Adv ; 10(3): eadi3621, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241375

ABSTRACT

Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.


Subject(s)
Biological Evolution , Synthetic Biology , Longitudinal Studies
5.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060459

ABSTRACT

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

6.
R Soc Open Sci ; 10(11): 230963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38026022

ABSTRACT

The vast microbial biodiversity of soils is beginning to be observed and understood by applying modern DNA sequencing techniques. However, ensuring this potentially valuable information is used in a fair and equitable way remains a challenge. Here, we present a public engagement project that explores this topic through collaborative research of soil microbiomes at six urban locations using nanopore-based DNA sequencing. The project brought together researchers from the disciplines of synthetic biology, environmental humanities and microbial ecology, as well as school students aged 14-16 years old, to gain a broader understanding of views on the use of data from the environment. Discussions led to the transformation of 'bioprospecting', a metaphor with extractive connotations which is often used to frame environmental DNA sequencing studies, towards a more collaborative approach-'biorespecting'. This shift in terminology acknowledges that genetic information contained in soil arises as a result of entire ecosystems, including the people involved in its creation. Therefore, any use of sequence information should be accountable to the ecosystems from which it arose. As knowledge can arise from ecosystems and communities, science and technology should acknowledge this link and reciprocate with care and benefit-sharing to help improve the wellbeing of future generations.

7.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37084251

ABSTRACT

MOTIVATION: The ability to measure the phenotype of millions of different genetic designs using Massively Parallel Reporter Assays (MPRAs) has revolutionized our understanding of genotype-to-phenotype relationships and opened avenues for data-centric approaches to biological design. However, our knowledge of how best to design these costly experiments and the effect that our choices have on the quality of the data produced is lacking. RESULTS: In this article, we tackle the issues of data quality and experimental design by developing FORECAST, a Python package that supports the accurate simulation of cell-sorting and sequencing-based MPRAs and robust maximum likelihood-based inference of genetic design function from MPRA data. We use FORECAST's capabilities to reveal rules for MPRA experimental design that help ensure accurate genotype-to-phenotype links and show how the simulation of MPRA experiments can help us better understand the limits of prediction accuracy when this data are used for training deep learning-based classifiers. As the scale and scope of MPRAs grows, tools like FORECAST will help ensure we make informed decisions during their development and the most of the data produced. AVAILABILITY AND IMPLEMENTATION: The FORECAST package is available at: https://gitlab.com/Pierre-Aurelien/forecast. Code for the deep learning analysis performed in this study is available at: https://gitlab.com/Pierre-Aurelien/rebeca.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Likelihood Functions , Sequence Analysis, DNA , Biological Assay
8.
PLoS Comput Biol ; 19(4): e1010988, 2023 04.
Article in English | MEDLINE | ID: mdl-37079494

ABSTRACT

Mechanistic models have been used for centuries to describe complex interconnected processes, including biological ones. As the scope of these models has widened, so have their computational demands. This complexity can limit their suitability when running many simulations or when real-time results are required. Surrogate machine learning (ML) models can be used to approximate the behaviour of complex mechanistic models, and once built, their computational demands are several orders of magnitude lower. This paper provides an overview of the relevant literature, both from an applicability and a theoretical perspective. For the latter, the paper focuses on the design and training of the underlying ML models. Application-wise, we show how ML surrogates have been used to approximate different mechanistic models. We present a perspective on how these approaches can be applied to models representing biological processes with potential industrial applications (e.g., metabolism and whole-cell modelling) and show why surrogate ML models may hold the key to making the simulation of complex biological systems possible using a typical desktop computer.


Subject(s)
Machine Learning , Models, Biological , Computer Simulation
9.
J Integr Bioinform ; 20(1)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36989443

ABSTRACT

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Subject(s)
Computational Biology , Synthetic Biology , Programming Languages , Software
10.
Methods Mol Biol ; 2553: 41-56, 2023.
Article in English | MEDLINE | ID: mdl-36227538

ABSTRACT

Machine learning is revolutionizing molecular biology and bioengineering by providing powerful insights and predictions. Massively parallel reporter assays (MPRAs) have emerged as a particularly valuable class of high-throughput technique to support such algorithms. MPRAs enable the simultaneous characterization of thousands or even millions of genetic constructs and provide the large amounts of data needed to train models. However, while the scale of this approach is impressive, the design of effective MPRA experiments is challenging due to the many factors that can be varied and the difficulty in predicting how these will impact the quality and quantity of data obtained. Here, we present a computational tool called FORECAST, which can simulate MPRA experiments based on fluorescence-activated cell sorting and subsequent sequencing (commonly referred to as Flow-seq or Sort-seq experiments), as well as carry out rigorous statistical estimation of construct performance from this type of experimental data. FORECAST can be used to develop workflows to aid the design of MPRA experiments and reanalyze existing MPRA data sets.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Biological Assay/methods , High-Throughput Nucleotide Sequencing/methods , Regression Analysis
11.
Ecol Lett ; 25(12): 2753-2775, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36264848

ABSTRACT

High-resolution monitoring is fundamental to understand ecosystems dynamics in an era of global change and biodiversity declines. While real-time and automated monitoring of abiotic components has been possible for some time, monitoring biotic components-for example, individual behaviours and traits, and species abundance and distribution-is far more challenging. Recent technological advancements offer potential solutions to achieve this through: (i) increasingly affordable high-throughput recording hardware, which can collect rich multidimensional data, and (ii) increasingly accessible artificial intelligence approaches, which can extract ecological knowledge from large datasets. However, automating the monitoring of facets of ecological communities via such technologies has primarily been achieved at low spatiotemporal resolutions within limited steps of the monitoring workflow. Here, we review existing technologies for data recording and processing that enable automated monitoring of ecological communities. We then present novel frameworks that combine such technologies, forming fully automated pipelines to detect, track, classify and count multiple species, and record behavioural and morphological traits, at resolutions which have previously been impossible to achieve. Based on these rapidly developing technologies, we illustrate a solution to one of the greatest challenges in ecology: the ability to rapidly generate high-resolution, multidimensional and standardised data across complex ecologies.


Subject(s)
Artificial Intelligence , Ecosystem , Biodiversity , Biota
12.
Methods Mol Biol ; 2518: 99-110, 2022.
Article in English | MEDLINE | ID: mdl-35666441

ABSTRACT

Precise control of gene expression is crucial when reprogramming the behavior of living cells. However, common inducible systems often lack the ability to stringently control gene expression due to the use of a single type of regulator that can be susceptible to unavoidable biomolecular fluctuations. In contrast, multilevel controllers (MLCs) employ several forms of regulation simultaneously to overcome this issue, ensuring a reduced basal expression while minimally affecting the maximum induced expression level that can be achieved. Here, we show how our publicly available genetic toolkit can be used to simplify the assembly of MLCs for the stringent control of gene expression. We demonstrate how new compatible parts can be designed and explain the rapid end-to-end assembly procedure.


Subject(s)
Protein Processing, Post-Translational , Synthetic Biology , Gene Expression , Proteomics , Synthetic Biology/methods
13.
ACS Synth Biol ; 11(3): 1049-1059, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35174698

ABSTRACT

The use of short peptide tags in synthetic genetic circuits allows for the tuning of gene expression dynamics and release of amino acid resources through targeted protein degradation. Here, we use elements of the Escherichia coli and Mesoplasma florum transfer-mRNA (tmRNA) ribosome rescue systems to compare endogenous and foreign proteolysis systems in E. coli. We characterize the performance and burden of each and show that, while both greatly shorten the half-life of a tagged protein, the endogenous system is approximately 10 times more efficient. On the basis of these results we then demonstrate using mathematical modeling and experiments how proteolysis can improve cellular robustness through targeted degradation of a reporter protein in auxotrophic strains, providing a limited secondary source of essential amino acids that help partially restore growth when nutrients become scarce. These findings provide avenues for controlling the functional lifetime of engineered cells once deployed and increasing their tolerance to fluctuations in nutrient availability.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Bacteria/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nutrients , Protein Biosynthesis , Proteolysis , RNA, Bacterial/genetics
14.
Nat Commun ; 13(1): 434, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064117

ABSTRACT

Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.


Subject(s)
Genetic Engineering , High-Throughput Nucleotide Sequencing , RNA, Messenger/genetics , Sequence Analysis, RNA , Base Pairing , Base Sequence , CRISPR-Cas Systems/genetics , Gene Library , Insulator Elements/genetics , Nanopore Sequencing , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/metabolism , Terminator Regions, Genetic , Transcription Termination, Genetic
15.
Front Robot AI ; 9: 1086043, 2022.
Article in English | MEDLINE | ID: mdl-36704240

ABSTRACT

Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome.

16.
J Integr Bioinform ; 18(3)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34674411

ABSTRACT

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.


Subject(s)
Computational Biology , Synthetic Biology , Computer Simulation , Metadata , Programming Languages , Software
17.
Synth Biol (Oxf) ; 6(1): ysab022, 2021.
Article in English | MEDLINE | ID: mdl-34712845

ABSTRACT

Diagrams constructed from standardized glyphs are central to communicating complex design information in many engineering fields. For example, circuit diagrams are commonplace in electronics and allow for a suitable abstraction of the physical system that helps support the design process. With the development of the Synthetic Biology Open Language Visual (SBOLv), bioengineers are now positioned to better describe and share their biological designs visually. However, the development of computational tools to support the creation of these diagrams is currently hampered by an excessive burden in maintenance due to the large and expanding number of glyphs present in the standard. Here, we present a Python package called paraSBOLv that enables access to the full suite of SBOLv glyphs through the use of machine-readable parametric glyph definitions. These greatly simplify the rendering process while allowing extensive customization of the resulting diagrams. We demonstrate how the adoption of paraSBOLv can accelerate the development of highly specialized biodesign visualization tools or even form the basis for more complex software by removing the burden of maintaining glyph-specific rendering code. Looking forward, we suggest that incorporation of machine-readable parametric glyph definitions into the SBOLv standard could further simplify the development of tools to produce standard-compliant diagrams and the integration of visual standards across fields.

18.
Nucleic Acids Res ; 49(13): 7775-7790, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34197613

ABSTRACT

CRISPR Cas12a is an RNA-programmable endonuclease particularly suitable for gene regulation. This is due to its preference for T-rich PAMs that allows it to more easily target AT-rich promoter sequences, and built-in RNase activity which can process a single CRISPR RNA array encoding multiple spacers into individual guide RNAs (gRNAs), thereby simplifying multiplexed gene regulation. Here, we develop a flexible dCas12a-based CRISPRi system for Saccharomyces cerevisiae and systematically evaluate its design features. This includes the role of the NLS position, use of repression domains, and the position of the gRNA target. Our optimal system is comprised of dCas12a E925A with a single C-terminal NLS and a Mxi1 or a MIG1 repression domain, which enables up to 97% downregulation of a reporter gene. We also extend this system to allow for inducible regulation via an RNAP II-controlled promoter, demonstrate position-dependent effects in crRNA arrays, and use multiplexed regulation to stringently control a heterologous ß-carotene pathway. Together these findings offer valuable insights into the design constraints of dCas12a-based CRISPRi and enable new avenues for flexible and efficient gene regulation in S. cerevisiae.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Endodeoxyribonucleases/chemistry , Gene Expression Regulation , Saccharomyces cerevisiae/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Down-Regulation , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Green Fluorescent Proteins/genetics , Nuclear Localization Signals , Promoter Regions, Genetic , Protein Domains , RNA/metabolism , RNA Polymerase II/metabolism , beta Carotene/biosynthesis
20.
Nat Commun ; 12(1): 3326, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099656

ABSTRACT

Biological technologies are fundamentally unlike any other because biology evolves. Bioengineering therefore requires novel design methodologies with evolution at their core. Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we have an engineering theory of evolution, we will neither be able to meet evolution's potential as an engineering tool, nor understand or limit its unintended consequences for our biological designs. Here, we propose the evotype as a helpful concept for engineering the evolutionary potential of biosystems, or other self-adaptive technologies, potentially beyond the realm of biology.


Subject(s)
Bioengineering/methods , Biological Evolution , Biotechnology , Phenotype , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...